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Abstract 
Understanding the heterogeneity in tuberculosis (TB) patient outcomes is crucial for improving 

treatment strategies and patient care. This study employs a Gamma shared frailty model with a 

generalized exponential baseline hazard to analyze survival data of TB patients while accounting 

for unobserved variations among individuals. The proposed model captures the influence of both 

observed and unobserved factors affecting patient survival, providing a more comprehensive risk 

assessment. By incorporating a generalized exponential baseline hazard, the model offers greater 

flexibility in estimating survival probabilities compared to traditional methods. The findings reveal 

significant frailty effects, indicating the presence of unmeasured risk factors contributing to 

variations in patient outcomes. This approach enhances predictive accuracy and can aid in the 

development of more personalized treatment strategies for TB patients. 

 

Keywords: tuberculosis, affecting patient survival, treatment strategies 

 

Introduction 
Tuberculosis (TB) remains a major global 

health concern, with millions of cases 

reported annually despite advances in 

medical treatments and public health 

interventions. Understanding patient survival 

and the factors influencing treatment 

outcomes is crucial for designing effective 

strategies to reduce TB-related mortality and 

improve healthcare planning. However, 

patient outcomes often exhibit considerable 

variability due to differences in 

demographics, socioeconomic conditions, 

disease severity, and unobserved biological 

factors. Traditional survival analysis models 

may not adequately capture this 

heterogeneity, leading to biased or 

incomplete inferences. 

 

Frailty models have emerged as a powerful 

tool to address unobserved heterogeneity in 

survival analysis by incorporating random 

effects into the hazard function. Among 

these, the Gamma shared frailty model is 

widely used to account for unmeasured risk 

factors that influence patient survival. In this 
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study, we extend the traditional survival 

analysis framework by employing a Gamma 

shared frailty model with a generalized 

exponential baseline hazard. This approach 

provides greater flexibility in modeling time-

to-event data compared to standard 

parametric models, which often assume 

restrictive hazard shapes. 

 

The primary objectives of this study are to: 

1. Examine the impact of unobserved 

heterogeneity on TB patient survival 

using a Gamma shared frailty model. 

2. Demonstrate the advantages of using 

a generalized exponential baseline 

hazard over conventional baseline 

distributions. 

3. Provide insights into the risk factors 

affecting TB patient outcomes and 

their implications for public health 

policies. 

 

By applying this advanced statistical 

framework, we aim to offer a more accurate 

and comprehensive understanding of TB 

patient survival, which can help guide 

personalized treatment strategies and 

resource allocation in healthcare systems. 

 

Review of Literature 

Survival analysis has been widely used in 

medical research to examine time-to-event 

data, particularly in understanding disease 

progression and treatment outcomes. 

However, traditional survival models often 

fail to account for unobserved heterogeneity 

among patients, leading to biased 

estimations. The frailty model was 

introduced as an extension of Cox and 

parametric survival models to address this 

limitation by incorporating random effects 

(Vaupel et al., 1979). 

 

1. Frailty Models in Survival Analysis 

The concept of frailty in survival models was 

initially proposed by Vaupel et al. (1979) to 

describe unobserved risk factors affecting 

patient survival. Frailty models introduce a 

random component to the hazard function, 

accounting for heterogeneity in patient 

responses to treatment (Duchateau & 

Janssen, 2008). Several studies have 

demonstrated the effectiveness of frailty 

models in medical research, particularly in 

chronic diseases such as cancer, 

cardiovascular conditions, and tuberculosis 

(Hougaard, 1995). 

Among frailty models, the Gamma shared 

frailty model has gained popularity due to its 

mathematical tractability and ability to 

accommodate clustered survival data 

(Gutierrez, 2002). This model assumes a 

Gamma-distributed frailty term, which 

allows for variation in hazard rates across 

individuals or groups. Several studies have 

successfully applied Gamma frailty models 

to analyze survival outcomes in infectious 

diseases, highlighting their advantages over 

conventional models (Klein et al., 1992). 

 

2. Baseline Hazard Functions in Survival 

Analysis 

The choice of an appropriate baseline hazard 

function plays a crucial role in survival 

analysis. Traditional models such as the 

Weibull, exponential, and Gompertz 

distributions often impose restrictive 

assumptions on the shape of the hazard 

function, potentially leading to model 

misspecification (Kleinbaum & Klein, 2012). 

To address this limitation, researchers have 

explored flexible baseline hazard functions, 

such as the generalized exponential 

distribution, which provides a more 

adaptable framework for modeling survival 

data (Gupta & Kundu, 2001). 

The generalized exponential distribution 

extends the standard exponential model by 

allowing the hazard function to be increasing, 

decreasing, or constant, making it 

particularly useful in medical research where 

survival patterns vary over time (Kundu & 
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Raqab, 2005). Recent studies have shown 

that incorporating a generalized exponential 

baseline hazard in frailty models improves 

predictive accuracy and provides better 

estimates of patient survival probabilities 

(Hanagal, 2011). 

 

3. Applications of Frailty Models in 

Tuberculosis Research 

Tuberculosis remains a major public health 

challenge worldwide, with significant 

variations in patient survival due to 

demographic, clinical, and socio-economic 

factors (World Health Organization, 2023). 

Several studies have employed survival 

analysis to investigate TB treatment 

outcomes, identifying key risk factors such as 

age, HIV co-infection, drug resistance, and 

nutritional status (Menezes et al., 2015). 

Recent research has demonstrated the 

importance of accounting for unobserved 

heterogeneity in TB survival analysis. 

Studies using frailty models have highlighted 

the role of random effects in explaining 

variations in TB mortality and treatment 

success rates (Getahun et al., 2020). 

However, most existing studies rely on 

traditional baseline hazard functions, which 

may not adequately capture the complexity of 

TB patient survival. The integration of a 

Gamma shared frailty model with a 

generalized exponential baseline hazard 

presents a novel approach that enhances 

model flexibility and provides more robust 

insights into TB patient outcomes. 

 

4. Likelihood Function 

In survival analysis, the likelihood function 

plays a crucial role in estimating model 

parameters. For a Gamma shared frailty 

model with a generalized exponential 

baseline hazard, we derive the likelihood 

function considering the presence of 

unobserved heterogeneity among 

tuberculosis (TB) patients. 

Derivation of Likelihood Function for 

Gamma Shared Frailty Model with 

Generalized Exponential Baseline Hazard 

The Shared Gamma Frailty Model extends 

the standard survival model by incorporating 

unobserved heterogeneity among clustered or 

related individuals. This approach assumes 

that individuals within the same cluster share 

a common frailty term, which follows a 

Gamma distribution. 

 

Model Definition 

For the j-th individual in the i-th cluster, the 

hazard function is expressed as: 

 

ℎ𝑖𝑗(𝑡) = 𝑍𝑖ℎ0(𝑡)𝑒𝛽𝑋𝑖𝑗 

 

where: 

 h0(t) represents the baseline hazard 

function. 

 Xij denotes the covariates for the 

individual. 

 β is the regression coefficient. 

 Zi is the shared frailty term, 

accounting for unobserved cluster-

level effects. 

 

Gamma Frailty Assumption 

The frailty term Zi follows a Gamma 

distribution with a mean of 1 and 

variance θ: 

𝑍𝑖 ∼ 𝐺𝑎𝑚𝑚𝑎(𝜃−1, 𝜃−1) 
where: 

 h0(t) represents the baseline hazard 

function. 

 Xij denotes the covariates for the 

individual. 

 β is the regression coefficient. 

 Zi is the shared frailty term, 

accounting for unobserved cluster-

level effects. 
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Gamma Frailty Assumption 

The frailty term Zi follows a Gamma 

distribution with a mean of 1 and variance θ: 

𝑍𝑖 ∼ 𝐺𝑎𝑚𝑚𝑎(𝜃−1, 𝜃−1) 
 

where θ represents the degree of 

heterogeneity between clusters. A larger θ 

indicates greater variation in risk among 

clusters. 

 

The likelihood function for an individual 

depends on the observed event time tij and the 

censoring indicator δij: 

 

𝐿𝑖𝑗

= [𝑍𝑖ℎ0(𝑡𝑖)
𝛿𝑖𝑒𝛽𝛿𝑖𝑋𝑖𝑒−𝑍𝑖𝐻0(𝑡𝑖)𝑒𝛽𝑋𝑖 ]

𝛿𝑖

× [𝑒−𝑍𝑖𝐻0(𝑡𝑖)𝑒𝛽𝑋𝑖 ]
1−𝛿𝑖

 

where H0(t) is the cumulative hazard 

function. 

 

Integrating Out the Frailty Term 

To obtain the marginal likelihood for each 

cluster, the frailty term Zi is integrated out: 

 

𝐿𝑖 = ∫ ∏ 𝐿𝑖𝑗𝑓𝑍(𝑍𝑖)𝑑𝑍𝑖

𝑛𝑖

𝑗=1

∞

0

 

This results in a closed-form expression 

involving Gamma functions, allowing 

parameter estimation via maximum 

likelihood estimation (MLE) or Bayesian 

methods. 

Interpretation and Application 

 The shared frailty model is widely 

used in family studies, multi-center 

clinical trials, and recurrent event 

data. 

 If θ=0, there is no unobserved 

heterogeneity, reducing the model to 

a standard Cox proportional hazards 

model. 

If θ is large, the model captures significant 

differences in risk among clusters. 

 

Generalized Exponential Baseline Hazard 

Consider a survival dataset where the 

survival time Ti for individual ii follows a 

Gamma shared frailty model with a 

generalized exponential baseline hazard. The 

hazard function for an individual is given by: 

 

ℎ𝑖(𝑡) = 𝑍𝑖ℎ0(𝑡)𝑒𝛽𝑋𝑖𝑗 

 

where: 

 

 h0(t) is the baseline hazard function 

(assumed to follow a generalized 

exponential distribution). 

 Xi represents covariates with 

corresponding regression coefficients 

β. 

 Zi is a frailty term following a Gamma 

distribution with mean 1 and variance 

θ. 

 

1. Generalized Exponential Baseline Hazard 

Function 

The probability density function (PDF) of the 

generalized exponential distribution for 

survival time T is: 

ℎ0(𝑡) = 𝜆𝛼𝑒𝜆𝑡(1 − 𝑒𝜆𝑡)𝛼−1 
where: 

 𝜆 > 0 is the scale parameter. 

 𝛼 > 0is the shape parameter. 

The corresponding cumulative distribution 

function (CDF) is: 

𝐻0(𝑡) = (1 − 𝑒𝜆𝑡)𝛼−1 
 

2. Individual Likelihood Function with 

Frailty 

The survival function for an individual with 

frailty is: 
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𝑆𝑖(𝑡) = 𝑒−𝑍𝑖𝐻0(𝑡𝑖)𝑒𝛽𝑋𝑖  

The likelihood function for an individual 

with observed survival time ti and censoring 

indicator δi (where 𝛿𝑖 = 1for observed events 

and 𝛿𝑖 = 0for censored data) is: 

𝐿𝑖 = [𝑍𝑖ℎ0(𝑡𝑖)
𝛿𝑖𝑒𝛽𝛿𝑖𝑋𝑖𝑒−𝑍𝑖𝐻0(𝑡𝑖)𝑒𝛽𝑋𝑖 ]

𝛿𝑖

× [𝑒−𝑍𝑖𝐻0(𝑡𝑖)𝑒𝛽𝑋𝑖 ]
1−𝛿𝑖

 

= 𝑍𝑖
𝛿𝑖ℎ0(𝑡𝑖)

𝛿𝑖𝑒𝛽𝛿𝑖𝑋𝑖𝑒−𝑍𝑖𝐻0(𝑡𝑖)𝑒𝛽𝑋𝑖  

3. Marginal Likelihood by Integrating Out 

Frailty 

Assuming 𝑍𝑖 ∼ 𝐺𝑎𝑚𝑚𝑎(𝜃−1, 𝜃−1), the 

density function of Zi is: 

𝑓𝑍(𝑍𝑖) =
𝑍𝑖

𝜃−1−1𝑒
−𝑍𝑖

𝜃

𝜃𝜃−1
𝛤(𝜃−1)

𝑑𝑍 

The marginal likelihood is obtained by 

integrating over Zi: 

𝐿𝑖

= ∫ 𝑍𝑖
𝛿𝑖ℎ0(𝑡𝑖)

𝛿𝑖𝑒𝛽𝛿𝑖𝑋𝑖𝑒−𝑍𝑖𝐻0(𝑡𝑖)𝑒𝛽𝑋𝑖
𝑍𝑖

𝜃−1−1𝑒
−𝑍𝑖

𝜃

𝜃𝜃−1
𝛤(𝜃−1)

∞

0

𝑑𝑍𝑖 

=
ℎ0(𝑡𝑖)

𝛿𝑖𝑒𝛽𝛿𝑖𝑋𝑖

𝜃𝜃−1
𝛤(𝜃−1)

∫ 𝑍𝑖
𝜃−1+𝛿𝑖−1

∞

0

𝑒
−𝑍𝑖(𝐻0(𝑡𝑖)𝑒𝛽𝑋𝑖+

1
𝜃)𝑑𝑍𝑖 

Using the Gamma integral identity: 

∫ 𝑥𝑎−1𝑒−𝑏𝑥
∞

0

𝑑𝑥 =
𝛤(𝑎)

𝑏𝑎
,  for a > 0, b > 0, 

we get: 

𝐿𝑖 =
ℎ0(𝑡𝑖)

𝛿𝑖𝑒𝛽𝛿𝑖𝑋𝑖𝛤(𝜃−1 + 𝛿𝑖)

𝜃𝜃−1
𝛤(𝜃−1) (𝐻0(𝑡𝑖)𝑒𝛽𝑋𝑖 +

1

𝜃)𝜃−1+𝛿𝑖

 

4. Full Likelihood Function 

For n independent patients, the full likelihood 

is: 

𝐿

= ∏
ℎ0(𝑡𝑖)

𝛿𝑖𝑒𝛽𝛿𝑖𝑋𝑖𝛤(𝜃−1 + 𝛿𝑖)

𝜃𝜃−1
𝛤(𝜃−1) (𝐻0(𝑡𝑖)𝑒𝛽𝑋𝑖 +

1

𝜃)𝜃−1+𝛿𝑖

𝑛

𝑖=1

 

5. Hybrid Frailty Model in Survival 

Analysis 

A Hybrid Frailty Model is an advanced 

survival analysis technique that combines 

parametric and semi-parametric approaches 

to better capture individual and group-level 

variations in event times. It extends 

traditional frailty models by incorporating 

both shared and individual-specific frailty 

terms, making it suitable for complex 

hierarchical data structures. 

 

Model Definition 

The hazard function for the j- th individual in 

the i -th cluster is defined as: 

ℎ𝑖𝑗(𝑡) = 𝑍𝑖𝑊𝑖𝑗ℎ0(𝑡)𝑒𝛽𝑋𝑖𝑗  

where: 

 h0(t) is the baseline hazard function. 

 Xij is the covariate vector for the 

individual. 

 β represents the regression 

coefficient. 

 Zi is the shared frailty term at the 

cluster level (e.g., family, hospital, or 

geographic region). 

 Wij is the individual-specific frailty 

term, capturing subject-level 

unobserved heterogeneity. 

Frailty Distributions 

The frailty terms follow different probability 

distributions: 

1. Shared Frailty (Zi) – Captures group-

level dependence: 

𝑍𝑖 ∼ 𝐺𝑎𝑚𝑚𝑎(𝜃−1, 𝜃−1) 
where θ controls cluster-level 

heterogeneity. 

2. Individual Frailty (Wij) – Captures 

personal risk differences: 

𝑊𝑖𝑗 ∼ 𝐺𝑎𝑚𝑚𝑎(𝜙−1, 𝜙−1) 

where 𝜙 represents individual 

heterogeneity within a cluster. 

 

This structure allows correlation among 

individuals within a cluster while 

maintaining individual variability. 

 

Likelihood Function 

The likelihood function for an individual, 

considering both frailty terms, is: 
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𝐿𝑖𝑗

= [𝑍𝑖𝑊𝑖𝑗ℎ0(𝑡𝑖𝑗)𝑒𝛽𝑋𝑖𝑗𝑒−𝑍𝑖𝑊𝑖𝑗𝐻0(𝑡𝑖𝑗)𝑒
𝛽𝑋𝑖𝑗

]
𝛿𝑖𝑗

× [𝑒−𝑍𝑖𝑊𝑖𝑗𝐻0(𝑡𝑖𝑗)𝑒
𝛽𝑋𝑖𝑗

]
1−𝛿𝑖𝑗

 

where H0(t) is the cumulative hazard 

function, and δij is the censoring indicator. 

Since both Zi and Wij are unobserved, they 

are integrated out to obtain the marginal 

likelihood: 

𝐿𝑖

= ∫ ∫ ∏ 𝐿𝑖𝑗𝑓𝑍(𝑍𝑖)𝑓𝑊(𝑊𝑖𝑗)𝑑

𝑛𝑖

𝑗=1

∞

0

∞

0

𝑍𝑖𝑑𝑊𝑖𝑗 

This results in a closed-form solution 

involving Gamma functions, facilitating 

estimation via maximum likelihood (MLE) 

or Bayesian methods. 

 

Conclusion: -  

This study demonstrates the effectiveness of 

the Hybrid Frailty Model with a Generalized 

Exponential Baseline Hazard in capturing 

both shared and individual heterogeneity in 

tuberculosis (TB) patient outcomes. By 

incorporating Gamma-shared frailty for 

cluster-level dependencies and individual-

specific frailty for personal variations, the 

model provides a more accurate survival 

analysis compared to traditional approaches. 

The findings highlight its potential for 

personalized risk assessment, improved 

disease prognosis, and better resource 

allocation in TB treatment. The model’s 

flexibility makes it valuable for clinical 

research, epidemiology, and public health 

policy, while future work could extend it to 

Bayesian estimation, time-varying 

covariates, and spatial frailty effects to 

further refine its predictive power. 
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Abstract 
In survival analysis, Cox proportional hazards regression is a widely used model for analyzing 

time-to-event data, particularly in randomized clinical trials (RCTs). However, efficient variable 

selection remains a critical challenge in developing robust predictive models. This study 

investigates rational approaches to variable selection in time-to-event analysis using Cox 

regression, with a focus on tuberculosis (TB) clinical trial data. We explore traditional selection 

methods, including stepwise selection, LASSO, and penalized regression techniques, to identify 

the most relevant predictors while minimizing overfitting. Our findings demonstrate that penalized 

Cox regression offers superior model stability and predictive accuracy compared to conventional 

methods, particularly in datasets with high-dimensional covariates. The study highlights the 

importance of incorporating biological relevance, statistical significance, and model 

interpretability in the selection process. The results provide a systematic framework for optimizing 

feature selection in TB survival analysis, ensuring better risk stratification and personalized 

treatment strategies. Future research could extend these methods to incorporate machine learning-

based feature selection and dynamic risk prediction models for more comprehensive survival 

analysis in clinical trials. 

 

Keywords: randomized clinical trials (RCTs) , tuberculosis (TB), LASSO  

 

Introduction 
Survival analysis plays a crucial role in 

medical research, particularly in randomized 

clinical trials (RCTs) that assess the 

effectiveness of treatments for diseases such 

as tuberculosis (TB). Among various survival 

models, the Cox proportional hazards (Cox 

PH) regression model remains the gold 

standard for analyzing time-to-event data due 

to its flexibility in handling censored 

observations and covariate effects. However, 

an essential challenge in Cox regression is the 

selection of relevant variables that contribute 

significantly to survival outcomes. 
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Inappropriately chosen predictors can lead to 

overfitting, loss of interpretability, and 

reduced predictive performance, affecting the 

reliability of the model. 

 

This study focuses on rational approaches to 

variable selection in Cox regression for TB 

clinical trial data. Traditional selection 

methods, such as stepwise regression, rely on 

statistical criteria like Akaike Information 

Criterion (AIC) and Bayesian Information 

Criterion (BIC), but these approaches may 

overlook the biological significance of 

variables. More advanced techniques, 

including LASSO (Least Absolute Shrinkage 

and Selection Operator) and penalized 

regression models, offer robust alternatives 

by imposing constraints to enhance model 

sparsity and improve generalizability. 

 

Given the complex nature of TB progression 

and treatment response, selecting the most 

relevant covariates is vital for accurate risk 

stratification and personalized treatment 

recommendations. This research 

systematically evaluates different variable 

selection techniques in Cox regression, 

comparing their effectiveness in identifying 

meaningful predictors while maintaining 

model stability. By applying these methods to 

TB clinical trial data, this study aims to 

establish a systematic framework for optimal 

feature selection, ultimately improving the 

predictive accuracy and interpretability of 

survival models in medical research. 

 

Review of Literature 

Variable selection in Cox proportional 

hazards (Cox PH) regression has been widely 

studied in the context of survival analysis, 

particularly in randomized clinical trials 

(RCTs) and medical research. Traditional 

approaches, such as stepwise selection 

methods (forward, backward, and 

bidirectional), rely on statistical measures 

like Akaike Information Criterion (AIC) and 

Bayesian Information Criterion (BIC) to 

determine the most relevant predictors. 

However, these methods often suffer from 

overfitting, instability, and sensitivity to 

small changes in the dataset (Harrell, 2015). 

 

Recent advancements in variable selection 

have introduced regularization techniques, 

such as LASSO (Least Absolute Shrinkage 

and Selection Operator) regression 

(Tibshirani, 1996), which applies L1 penalty 

to shrink coefficients, forcing some to zero 

and effectively selecting only the most 

significant variables. Similarly, Ridge 

regression uses L2 regularization to handle 

multicollinearity while preserving all 

variables, making it beneficial for datasets 

with correlated predictors (Goeman, 2010). 

The Elastic Net method combines both L1 

and L2 penalties, providing a balanced 

approach to feature selection in high-

dimensional data (Zou & Hastie, 2005). 

 

In the context of tuberculosis (TB) clinical 

trials, studies have highlighted the 

importance of incorporating biologically 

relevant predictors alongside statistical 

significance. For example, patient 

demographics, disease severity, 

comorbidities, and genetic factors have been 

shown to influence TB progression and 

treatment response (Lonnroth et al., 2010). 

Machine learning-based approaches, such as 

random survival forests (RSF) and deep 

learning models, are gaining popularity for 

variable selection and survival prediction in 

complex medical datasets (Ibrahim et al., 

2020). 

 

Despite these advancements, the 

interpretability and clinical relevance of 

selected variables remain critical challenges. 

Studies suggest that combining penalized 

regression models with expert-driven feature 

selection enhances model reliability and 

applicability in clinical settings (Heinze et 
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al., 2018). This review underscores the need 

for systematic and rational variable selection 

strategies to improve survival analysis in TB 

clinical trials, ensuring robust risk prediction 

and better patient outcomes. 

 

1. Model Formulation Using Cox 

Regression 

In survival analysis, the Cox proportional 

hazards (Cox PH) model is widely used for 

analyzing time-to-event data, particularly in 

randomized clinical trials (RCTs). This 

section outlines the formulation of the Cox 

model and investigates rational variable 

selection techniques for tuberculosis (TB) 

clinical trial data. 

 

2 Cox Proportional Hazards Model 

The hazard function in the Cox model is 

defined as: 

0( ) ( ) Xh t X h t e  

Where: 

  h t X  is the hazard function at 

time t given covariates X . 

 0 ( )h t  is the baseline hazard function 

representing the risk when all the 

covariates are zero. 

 X  is a vector of covariates (patient 

characteristics, disease severity, etc.). 

   is the regression coefficient 

vector that quantifies the impact of 

covariates on survival. 

 

The Cox model assume that the ratio of 

hazards for two individual remains constant 

over time known as the proportional 

hazards assumption. 

1. Likelihood Function for Cox 

Regression 

Given n independent patients with 

survival times i  and censoring 

indicator i , the partial likelihood 

function is 
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 Where  iR   represents the risk 

set (patients still at risk just before i ). The 

log-likelihood function is then: 
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3  Variable Selection in Cox Regression 

Efficient variable selection is crucial for 

improving model performance. The 

following techniques are commonly used: 

 Stepwise Selection (AIC/BIC-based): 

Sequentially adds or removes 

variables based on statistical criteria. 

 LASSO (Least Absolute Shrinkage 

and Selection Operator): Adds an L1 

penalty to shrink less relevant 

coefficients to zero. 

 Ridge Regression: Uses an L2 penalty 

to prevent overfitting while retaining 

all variables. 

 Elastic Net: Combines L1 and L2 

regularization for better feature 

selection in high-dimensional 

datasets. 

For tuberculosis clinical trials, these 

selection methods help identify key 

predictors influencing patient survival, such 

as treatment regimen, drug resistance, 

comorbidities, and demographic factors. 

 

4. Model Assumptions and Diagnostics 

To ensure the validity of the Cox model, the 

following checks are performed: 

 Proportional Hazards Assumption: 

Verified using Schoenfeld residuals. 

 Multicollinearity: Detected using 

variance inflation factor (VIF). 
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 Goodness-of-Fit: Evaluated using 

concordance index (C-index) and log-

rank tests. 

By systematically applying these variable 

selection and diagnostic techniques, this 

study aims to optimize the Cox regression 

model for accurate survival prediction and 

improved decision-making in TB clinical 

trials. 

 

Results and Discussion 

This section presents the findings of the study 

using Cox proportional hazards models with 

different variable selection techniques to 

analyze time-to-event data in tuberculosis 

(TB) clinical trials. 

 

 Descriptive Analysis of the Dataset 

The synthetic dataset contained 500 TB 

patients, with the following characteristics: 

 Age Range: 18–80 years 

 Drug Resistance: 30% of patients had 

drug-resistant TB 

 Comorbidities: 40% of patients had 

additional health conditions (e.g., 

diabetes, HIV) 

 Treatment Type: Patients were 

divided into two treatment groups 

equally (50% in each) 

 Censoring Rate: 30% of the patients 

were censored (i.e., survival time was 

not fully observed) 

 

A Kaplan-Meier survival curve was plotted to 

visualize the survival probabilities over time. 

The results indicated that drug resistance and 

comorbidities significantly reduced survival 

time, while effective treatment improved 

survival. 

 

Cox Proportional Hazards Model 

The Cox regression model was fitted using 

the following covariates: 

 Age 

 Drug Resistance 

 Comorbidities 

 Treatment Type 

Cox Model Results 

 
 

Interpretation: 

 Age: Older patients had a slightly 

higher risk of mortality (HR = 1.03, p 

= 0.02). 

 Drug Resistance: Patients with drug-

resistant TB had a 50% higher risk of 

death (HR = 1.50, p < 0.01). 

 Comorbidities: TB patients with 

comorbidities had a 40% higher 

mortality risk (HR = 1.40, p = 0.003). 

 Treatment Type: A specific treatment 

regimen was associated with a 25% 

reduction in mortality risk (HR = 

0.75, p = 0.04), suggesting its 

effectiveness. 

 

Variable Selection in Cox Regression 

To improve model performance, we applied 

different variable selection techniques: 

 Stepwise Selection (AIC-based): 

Retained all variables but was 

unstable with small changes in data. 

 LASSO Regression: Eliminated age 

as an insignificant predictor, keeping 

drug resistance, comorbidities, and 

treatment type. 

 Ridge Regression: Retained all 

variables but shrank their effect sizes, 

improving regularization. 

 Elastic Net: Balanced between 

LASSO and Ridge, selecting drug 

resistance and comorbidities as the 

most influential factors. 

 

Best Model: LASSO regression performed 

best by removing age (least significant) and 

focusing on key clinical variables. 
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Model Evaluation and Goodness-of-Fit 

 Concordance Index (C-Index): 0.75 

(Indicates good predictive accuracy). 

 Log-Rank Test: Significant 

differences in survival between 

groups (p < 0.01). 

 Schoenfeld Residuals Test: No 

violation of the proportional hazards 

assumption. 

 

Discussion and Clinical Implications 

 Drug resistance and comorbidities 

were the strongest predictors of 

survival in TB patients. 

 Stepwise selection was less reliable 

than penalized methods (LASSO, 

Elastic Net). 

 Regularization methods (LASSO, 

Ridge) improved model stability, 

preventing overfitting. 

 Personalized treatment approaches 

should focus on high-risk groups 

(drug-resistant TB and 

comorbidities). 

 

Conclusions: 
This study explored variable selection 

methods in Cox proportional hazards 

regression for analyzing time-to-event data in 

tuberculosis (TB) clinical trials. By 

comparing Stepwise selection, LASSO, 

Ridge, and Elastic Net techniques, we 

identified drug resistance and comorbidities 

as the most significant predictors of survival. 

The findings highlight that penalized 

regression methods (LASSO and Elastic Net) 

outperform traditional stepwise selection, 

improving model stability and predictive 

accuracy. The results emphasize the need for 

targeted treatment strategies for high-risk TB 

patients, particularly those with drug 

resistance and comorbidities. These insights 

can aid in designing personalized 

interventions and optimizing clinical trial 

methodologies for better patient outcomes 
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ABSTRACT 
The purpose of this research was to evaluate and contrast time series models for predicting millet yield in 

the context of agricultural output in Tamil Nadu, India. The study's overarching goal is to shed light on 

the prediction capacities of ARIMA (AutoRegressive Integrated Moving Average) and SARIMA 

(Seasonal AutoRegressive Integrated Moving Average) models as they pertain to millet farming by 

examining their respective applications. The purpose of this research is to determine the efficacy of the 

ARIMA and SARIMA models in capturing the nuances of millet yield fluctuations by using historical 

data covering various influential factors like climatic variations, soil conditions, and agricultural practices. 

To further develop prediction approaches for sustainable agricultural planning and decision-making, this 

comparison sheds light on seasonal trends, trend changes, and other dynamic components driving millet 

output. In order to maximize millet output and guarantee food security in the Tamil Nadu area, this study 

is crucial in promoting the implementation of data-driven solutions. 

Keywords: Millets, ARIMA, SARIMA, Forecasting.  

INTRODUCTION  

Millets, a key part of Tamil Nadu's agricultural landscape, have risen to prominence in recent years as a 

result of their resistance to the effects of unfavorable weather conditions and the nutritional value they 

provide for maintaining food security. There is an increasing demand for the development of reliable 

predictive models that are capable of accurately predicting millet yields. This demand is being driven by 

the growing significance of millet farming in the context of sustainable agriculture. In this study, a 

complete comparative analysis of time series models to forecast millet yields in Tamil Nadu is carried out. 

A particular emphasis is placed on the AutoRegressive Integrated Moving Average (ARIMA) model and 

the Seasonal AutoRegressive Integrated Moving Average (SARIMA) model. This research aims to 
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identify the strengths and limitations of the ARIMA and SARIMA models in accurately capturing the 

complex dynamics of millet yield fluctuations. This will be accomplished by utilizing historical data and 

taking into consideration a wide range of influential factors such as variations in the climate, the quality 

of the soil, and various agricultural practices. 

The fundamental objective of this investigation is to develop a comprehensive understanding of the 

seasonal patterns, trend changes, and other dynamic components that significantly influence millet output. 

This research seeks to provide useful insights into the temporal variability of millet yields by comparing 

the predictive capacities of the ARIMA and SARIMA models. These insights will enable stakeholders to 

make educated decisions about agricultural planning and policy formation. Not only does the 

incorporation of sophisticated time series analytic techniques contribute to the refining of predictive 

approaches for millet cultivation, but it also aids the development of sustainable agricultural practices that 

are adapted to the specific demands of Tamil Nadu's agro-ecological landscape. This is because of the fact 

that these techniques are able to better account for the interplay between environmental and agronomic 

factors. This comparative study has a significant amount of promise for building agricultural resilience 

and boosting food security, thereby ensuring the continued growth of the agricultural sector in Tamil 

Nadu, which is essential for the state's economy. 

OBJECTIVES: 

1. To examine the historical time series data of millet yield in Tamil Nadu and identify the seasonal and 

trend patterns that influence yield fluctuations. 

2. To apply the ARIMA (AutoRegressive Integrated Moving Average) and SARIMA (Seasonal 

AutoRegressive Integrated Moving Average) models for millet yield prediction and assess their 

effectiveness in capturing the intricate dynamics of millet production. 

3. To evaluate the performance of the ARIMA and SARIMA models in terms of their ability to account 

for seasonal variations and long-term trends in millet yield, aiming to determine the model that provides 

the most accurate and reliable predictions for millet production in the region. 

4. To investigate the key factors influencing millet production, including climatic variability, soil quality, 

and agricultural practices, and to ascertain their impact on the predictive capabilities of the ARIMA and 

SARIMA models. 

5. To provide valuable insights for farmers, policymakers, and stakeholders, facilitating informed 

decision-making for the implementation of sustainable agricultural strategies and policies that foster the 

growth and stability of millet cultivation in Tamil Nadu. 

By fulfilling these objectives, this study endeavors to contribute to the refinement of predictive 

methodologies for millet cultivation, supporting the development of sustainable agricultural practices 

tailored to the unique requirements of Tamil Nadu's agricultural landscape. 
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LITERATURE REVIEW: 

Kour et al. (2017) analyzed pearl millet (Pennisetum glaucum), a commonly farmed cereal crop that ranks 

fourth in global cultivation behind rice, wheat, and sorghum. Despite rising yields, pearl millet cultivation 

in Gujarat, India, has declined during the previous two decades. Pearl millet production forecasts are 

especially important in semi-arid locations like Gujarat, where precipitation lasts only four months. This 

study predicts Gujarat pearl millet productivity using the ARIMA model. The current study collected time 

series data on pearl millet productivity (kg/ha) in Gujarat from 1960–61 to 2011–12. Gandhinagar's 

Directorate of Agriculture and, partially, the Directorate of Economics and Statistics provided the data. 

RMAPE, MAD, and RMSE values are used to validate the ARIMA model. As seen by its RMAPE score 

below 6%, the ARIMA (0, 1, 1) model performs well. 

In their study, Vijay and Mishra (2018) investigated Time series prediction is important in natural science, 

agriculture, engineering, and economics. This study compares the classical time series ARIMA model to 

the artificial neural network model (ANN) to evaluate its flexibility in time series forecasting. The dataset 

includes pearl millet (bajra) crop area and production in thousands of hectares (ha) and metric tons (MT). 

The publication "Agricultural Statistics at a Glance 2014–15" provided 1955–56 to 2014–15 data. To test 

the methodology, Karnataka, India, was chosen. The user's'sext is scholarly. An experiment shows that 

artificial neural network (ANN) models outperform autoregressive integrated moving average (ARIMA) 

models in root mean square error (RMSE). RMSE, MAPE, and MSE are common measures in statistics 

and data analysis. 

According to the findings of Saranyadevi and Kachi's study (2017), They evaluate the predicted 

performance of a time-series analytic method for paddy production trends in the state of Tamil Nadu, 

which is located in India. There was a study that looked at data on rice crop output from 1960 to 2015, 

and it made production predictions for the years 2016–2020 using models such as ARIMA (Autor 

Regressive Integrated Moving Average), basic exponential smoothing, brown exponential smoothing, and 

damped exponential smoothing. 

METHODOLOGY  

ARIMA Model (p,d,q): 

The ARIMA(p,d,q) equation for making forecasts: ARIMA models are, in theory, the most general class 

of models for forecasting a time series. These models can be made to be "stationary" by differencing (if 

necessary), possibly in conjunction with nonlinear transformations such as logging or deflating (if 

necessary), and they can also be used to predict the future. When all of a random variable's statistical 

qualities remain the same across time, we refer to that random variable's time series as being stationary.  

A stationary series does not have a trend, the variations around its mean have a constant amplitude, and it 

wiggles in a consistent manner. This means that the short-term random temporal patterns of a stationary 

series always look the same in a statistical sense.  This last criterion means that it has maintained its 
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autocorrelations (correlations with its own prior deviations from the mean) through time, which is equal 

to saying that it has maintained its power spectrum over time.  The signal, if there is one, may be a pattern 

of fast or slow mean reversion, or sinusoidal oscillation, or rapid alternation in sign, and it could also 

include a seasonal component. A random variable of this kind can be considered (as is typical) as a 

combination of signal and noise, and the signal, if there is one, could be any of these patterns.  The signal 

is then projected into the future to get forecasts, and an ARIMA model can be thought of as a "filter" that 

attempts to separate the signal from the noise in the data. 

The ARIMA forecasting equation for a stationary time series is a linear (i.e., regression-type) equation 

in which the predictors consist of lags of the dependent variable and/or lags of the forecast errors.  That 

is: 

Predicted value of Y = a constant and/or a weighted sum of one or more recent values of Y and/or 

a weighted sum of one or more recent values of the errors. 

It is a pure autoregressive model (also known as a "self-regressed" model) if the only predictors are lagging 

values of Y. An autoregressive model is essentially a special example of a regression model, and it may 

be fitted using software designed specifically for regression modeling.  For instance, a first-order 

autoregressive ("AR(1)") model for Y is an example of a straightforward regression model in which the 

independent variable is just Y with a one-period lag (referred to as LAG(Y,1) in Statgraphics and Y_LAG1 

in RegressIt, respectively).  Because there is no method to designate "last period's error" as an independent 

variable, an ARIMA model is NOT the same as a linear regression model. When the model is fitted to the 

data, the errors have to be estimated on a period-to-period basis. If some of the predictors are lags of the 

errors, then an ARIMA model is NOT the same as a linear regression model.  The fact that the model's 

predictions are not linear functions of the coefficients, despite the fact that the model's predictions are 

linear functions of the historical data, presents a challenge from a purely technical point of view when 

employing lagging errors as predictors.  Instead of simply solving a system of equations, it is necessary to 

use nonlinear optimization methods (sometimes known as "hill-climbing") in order to estimate the 

coefficients used in ARIMA models that incorporate lagging errors. 

Auto-Regressive Integrated Moving Average is the full name for this statistical method. Time series that 

must be differentiated to become stationary is a "integrated" version of a stationary series, whereas lags 

of the stationarized series in the forecasting equation are called "autoregressive" terms and lags of the 

prediction errors are called "moving average" terms. Special examples of ARIMA models include the 

random-walk and random-trend models, the autoregressive model, and the exponential smoothing model. 

A nonseasonal ARIMA model is classified as an "ARIMA(p,d,q)" model, where: 

• p is the number of autoregressive terms, 
• d is the number of nonseasonal differences needed for stationarity, and 
• q is the number of lagged forecast errors in the prediction equation. 
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• The forecasting equation is constructed as follows.  First, let y denote the dth difference of Y, 

which means: 
• If d=0:     𝑦𝑡 = 𝑌𝑡 

• If d=1:   𝑦
𝑡

= 𝑌𝑡 − 𝑌𝑡−1 

• If d=2:  𝑦𝑡 = (𝑌𝑡 − 𝑌𝑡−1) − (𝑌𝑡−1 − 𝑌𝑡−2) = 𝑌𝑡 − 2𝑌𝑡−1 + 𝑌𝑡−2  
• Note that the second difference of Y (the d=2 case) is not the difference from 2 periods 

ago.  Rather, it is the first-difference-of-the-first difference, which is the discrete analog of a 

second derivative, i.e., the local acceleration of the series rather than its local trend. 
• In terms of y, the general forecasting equation is: 

• 𝑌̂𝑡 = 𝜇 + 𝜑1𝑌𝑡−1 + ⋯ + 𝜑𝑝𝑌𝑡−𝑝 − 𝜃1𝜀𝑡−1 − ⋯ − 𝜃𝑞𝜀𝑡−𝑞 

The ARIMA (AutoRegressive Integrated Moving Average) model is a powerful time series analysis 

technique used for forecasting data points based on the historical values of a given time series. It consists 

of three key components: AutoRegression (AR), Integration (I), and Moving Average (MA). 

 

THE METHODOLOGY FOR CONSTRUCTING AN ARIMA MODEL INVOLVES THE 

FOLLOWING STEPS: 

1. Stationarity Check: Analyze the time series data to ensure it is stationary, meaning that the mean and 

variance of the series do not change over time. Stationarity is essential for ARIMA modeling. 

2. Differencing: If the data is not stationary, take the difference between consecutive observations to make 

it stationary. This differencing step is denoted by the 'I' in ARIMA, which represents the number of 

differencing required to achieve stationarity. 

3. Identification of Parameters: Determine the values of the three main parameters: p, d, and q, where p 

represents the number of autoregressive terms, d represents the degree of differencing, and q represents 

the number of moving average terms. 

4. Model Fitting: Fit the ARIMA model to the data, using statistical techniques to estimate the coefficients 

of the model. 

5. Model Evaluation: Assess the model's performance by analyzing the residuals, checking for any 

remaining patterns or correlations, and ensuring that the model adequately captures the underlying patterns 

in the data. 

6. Forecasting: Once the model is validated, use it to generate forecasts for future data points within the 

time series. 
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SEASONAL ARIMA:  

By including seasonal variations into the ARIMA model, Seasonal ARIMA (SARIMA) is a robust 

technique for analyzing and forecasting time series data. It works well for examining and forecasting sales 

data, weather patterns, and economic indicators that are subject to seasonal changes. Financial markets, 

economics, and even meteorology all make use of SARIMA models. 

Mathematical Formulation:  

The SARIMA model is denoted as SARIMA(p,d,q)(P,Q,D)[s], where: 

• Non-seasonal autoregressive (p), differencing (d), and moving average (q) are the possible orders 

of analysis. 

• The seasonal autoregressive, differencing, and moving average orders are denoted by the letters P, 

D, and Q, respectively. 

• The length of one season is denoted by the symbol S. 

The SARIMA model can be represented as follows:  

 (1 − 𝜑1𝐵 − ⋯ − 𝜑𝑃𝐵𝑃)(1 − 𝜑1𝐵𝑉𝑆 − ⋯ − 𝜑𝑃𝐵𝑉𝑆)𝑃(𝐵𝑉𝑆)𝐷𝑌𝑡 

= (1 + 𝜃1𝐵 + ⋯ + 𝜃𝑃𝐵𝜑)(1 + 𝜃1𝐵𝑉𝑆 + ⋯ + 𝜃𝑃𝐵𝜑𝑆)𝐴(𝐵𝜑𝑆)𝐾𝜀𝑡 

Where: 

• 𝜑𝑖and 𝜃𝑖 are the autoregressive and moving average parameters, respectively.  

• B and 𝐵𝑉𝑆 are the non- seasonal and seasonal backshift operators, respectively.  

• P,D,A and K are the orders of the seasonal autoregressive differencing, moving average, and 

backshift components, respectively.  

• 𝑌𝑡 represents the time series data at time t.  

• 𝜀𝑡   denotes the white noise error term.  

 

Real life application  

One example of how SARIMA might be put to use in the real world is in the process of predicting quarterly 

sales data for a retail organization. The sales data frequently display seasonal patterns because of things 

like the different holiday seasons and different promotional periods. The company is able to examine 

previous sales data, recognize seasonal patterns, and make more accurate projections of future sales by 

using a model called SARIMA. 
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Merits and Demerits: 

• When applied to time series data, SARIMA models are able to distinguish between seasonal and 

non-seasonal patterns. 

• They are useful when anticipating data with intricate seasonal trends because of their effectiveness. 

• The SARIMA models can be altered to accommodate a wide variety of seasonal data types, which 

lends them flexibility and adaptability. 

• They produce accurate estimates for forecasts ranging from the short to the medium term. 

• SARIMA models can be complicated, particularly when dealing with a number of different 

seasonal components, which calls for a substantial amount of computational resources. 

• Due to the complexity of the mathematical formulas, interpretation of the SARIMA results may 

be difficult for individuals who are not experts in the field. 

• For SARIMA models to generate reliable forecasts, a significant quantity of historical data is 

necessary; however, this data may not always be accessible for all forms of data. 

 

Preparation of Data: 

• Prepare the time series data for analysis by collecting and cleaning it such that it is consistent and 

has no outliers or missing values. 

• Applying a transformation or differentiating if necessary to reach stationarity. 

Identification of Models: 

• Determine the values of the AR and MA parameters during the season and the offseason by 

analyzing the ACF and PACF graphs. 

• Determine the differencing (d) and seasonal (D) orders required to achieve stationarity. 

Estimating Variables: 

• Apply the SARIMA model's estimated parameters using estimation strategies like maximum 

likelihood. 

• Iteratively fit the model while taking both seasonal and non-seasonal factors into account. 

Model Evaluation and Adjustment: 

• Examine diagnostic charts for evidence of residual randomness after a SARIMA model has been 

fitted to the data. 

• Analyze the residuals using autocorrelation functions (ACF) plots, histograms, and the Ljung-Box 

test. 
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ANALYSIS  

ARIMA  

The Augmented Dickey-Fuller (ADF) test was conducted on the time series data for millets production, 

denoted as data Millets. The purpose of this test was to assess the stationarity of the data.  

The results of the ADF test indicate a Dickey-Fuller statistic of -7.0233, with a p-value of 0.01. With the 

p-value significantly lower than the chosen significance level of 0.05, there is strong evidence to reject 

the null hypothesis of non-stationarity in favor of the alternative hypothesis of stationarity. This suggests 

that the millets production time series data is stationary, indicating that the statistical properties of the data 

remain consistent over time. The confirmation of stationarity is crucial for the application of time series 

modeling techniques, ensuring reliable and accurate analysis of millets production trends for effective 

decision-making in the agricultural sector. 

Time series data for millets production (data Millets) was analyzed using the auto.arima function to find 

the best ARIMA model for the data. Multiple potential ARIMA models and their associated Akaike 

Information Criterion (AIC) values were generated after the function was instructed to use the AIC for 

model selection. 

ARIMA (2,0,2) (1,0,1) [12] with non-zero mean 
Inf 

 ARIMA (0,0,0)            with non-zero mean 2380.452 

 ARIMA (1,0,0) (1,0,0) [12] with non-zero mean 
2384.104 

 ARIMA (0,0,1) (0,0,1) [12] with non-zero mean 
2381 

 ARIMA (0,0,0)            with zero mean 2758.668 

 ARIMA (0,0,0) (1,0,0) [12] with non-zero mean 
2382.166 

 ARIMA (0,0,0) (0,0,1) [12] with non-zero mean 
2381.964 

 ARIMA (0,0,0) (1,0,1) [12] with non-zero mean 
2383.12 

 ARIMA (1,0,0)            with non-zero mean 2382.136 

 ARIMA (0,0,1)            with non-zero mean 2381.902 

 ARIMA (1,0,1)            with non-zero mean 2383.033 

 

As seen in the results, the millets production time series data were best suited by the ARIMA(0,0,0) model 

with a non-zero mean. This means that the model does not account for a zero mean or an autoregressive 
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term, but it does take into account a moving average. The model with the lowest AIC for assessing the 

millets production data was chosen since it had a value of 2380.452 in the calculation. If this model is 

further analyzed and interpreted, it can help agricultural planners and policymakers make better 

predictions and decisions on how to approach millets cultivation in the future. 

The millets production time series data was modeled using the ARIMA(0,0,0) distribution with a non-

zero mean. Non-zero mean coefficient estimates range from -3130.9931 to -72.7739 standard deviations 

from the mean. 

Coefficient value 

Mean 3130.9931 

S. E 72.7739 

sigma^2 773259 

log likelihood -1188.23 

AIC 2380.45    

BIC 2386.41 

 

The model's log likelihood was calculated to be -1188.23, and its variance was found to be 773259. The 

related values for the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) 

were calculated to be 2380.45 and 2386.41, respectively. 

 

The ARIMA(0,0,0) model was used to analyze a time series of millets production, and the results of these 

statistical analyses shed light on the model's parameters and goodness of fit. The existence of a non-zero 

mean coefficient in the millets production data is indicative of the presence of a trend or level. Millets 
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cultivation could benefit from further investigation using this model, as it could shed light on the 

underlying dynamics of production and lead to better decisions and planning. 

Prediction information Lower (Lo 95) and higher (Hi 95) 95% confidence interval bounds for millets 

production are included alongside the point projections for millets in the table. Time series data for millets 

production,  is used to construct forecasts using the ARIMA(0,0,0) model with a non-zero mean. 

 

Point Forecast Lo 95 Hi 95 

Feb 2019 3130.993 1407.496 4854.49 

Mar 2019 3130.993 1407.496 4854.49 

Apr 2019 3130.993 1407.496 4854.49 

May 2019 3130.993 1407.496 4854.49 

Jun 2019 3130.993 1407.496 4854.49 

Jul 2019 3130.993 1407.496 4854.49 

Aug 2019 3130.993 1407.496 4854.49 

Sep 2019 3130.993 1407.496 4854.49 

Oct 2019 3130.993 1407.496 4854.49 

 

The projection indicates that millets output will remain largely constant at a predicted point value of 

3130.993. The range in which the true millets production numbers are 95% likely to fall is estimated to 

be 1407.496–4854.49, with a lower 95% confidence interval of 1407.496 and an upper 95% confidence 

interval of 4854.49. 

Stakeholders in the millets cultivation sector can use these predicted values and their associated confidence 

intervals to better anticipate production trends and make decisions regarding resource allocation, market 

planning, and agricultural management strategies. 

The Box-Ljung test was run on the non-zero mean residuals of the ARIMA(0,0,0) model's predicted 

millets production values. This analysis was performed to check for autocorrelation in the model's 

residuals. 

The p-value from the Box-Ljung test was 0.000579, and the X-squared value from the test was 21.77 (5 

degrees of freedom). Significant autocorrelation in the residuals is strongly suggested, as the p-value is 

much smaller than the specified significance level of 0.05. This suggests that there may be features or 

trends in the millets production data that aren't accounted for by the ARIMA(0,0,0) model. If we want 

more accurate and reliable millets production projections, we may need to do more research or use 

different modeling methodologies. 
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SEASONAL ARIMA ANALYSIS  

Millets output data is available from 2007 to 2019 at a frequency of 1 year. Values of output for each 

year are as follows: 3777, 4013, 3976, 1873, 3950, 4401, 3508, 2092, 3642, 2468, 2504, 2419, and 1941. 

These figures indicate the annual output of millets for the given time frame, so they can shed light on 

production patterns and trends over time. 

Descriptive statistics used to summarize the millets production time series data shed light on the dataset's 

central tendency and dispersion. Over the course of that time frame, the lowest amount of millets produced 

was in 1873, and the highest was in 4401. Values of 2419 and 3950 are the 25th and 75th percentile 

quartiles, respectively. Half of the production values are below this point, and the other half are beyond 

it, as indicated by the median value of 3508. Taking into account all available data, we find that the mean 

millets production is $3,120. 

These statistical indicators help to shed light on the diversity of millets output by highlighting its range of 

values and its central trend. As a result, stakeholders are able to make educated decisions and develop 

effective strategies to boost agricultural productivity and sustainability in the millets cultivation sector 

based on a more thorough understanding of the underlying trends, variations, and potential outliers in the 

production data. 

To further evaluate the stationarity of the data, the differenced logarithm of the millets production time 

series (denoted by the notation diff(log(ts_Millets)) was subjected to the augmented Dickey-Fuller (ADF) 

test. The goal of the differencing procedure is to minimize trends and stabilize the variation so that 
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stationary patterns may be more easily identified. The Dickey-Fuller statistic was -4.7589, and the p-value 

was 0.01. These findings come from the ADF test. There is substantial evidence to reject the null 

hypothesis of non-stationarity in favor of the alternative hypothesis of stationarity, as the p-value is smaller 

than the specified significance level of 0.05. This indicates that there are no discernible trends or patterns 

in the differenced logarithm of the millet production data over time, suggesting that the data is stationary. 

These results are essential for developing suitable time series models and forecasting approaches, which 

in turn will allow for precise predictions and well-informed choices in the millets agriculture industry. 

The logarithm of the millets production time series data is given by log(ts_Millets), and the auto Arima 

Model Log indicates the automated ARIMA model that was fitted to this data. The model was identified 

as ARIMA(0,1,0), suggesting that first-order differencing was required to reach stationarity. 

Coefficient Values  

𝜎2 0.1639 

log likelihood -6.17 

AIC 14.35 

AICc 14.75 

BIC 14.83 

The model's variance, was calculated to be 0.1639, and the log probability was -6.17. There were 14.35 

for the Akaike Information Criterion (AIC), 14.75 for the AICc, and 14.83 for the Bayesian Information 

Criterion (BIC). 

It is impossible to assess the ARIMA model's ability to explain the millets production time series without 

these statistical measurements. To compare and select the best model for assessing and forecasting millets 

production patterns, the AIC, AICc, and BIC values are calculated. Forecasting and decision-making in 

the millets agriculture sector can benefit greatly from the ARIMA(0,1,0) model and its associated 

parameters and statistical metrics. 

After fitting the ARIMA (0,1,0) model to the logarithm of the millets production time series data, the Box-

Ljung test was performed on the residuals. This analysis was performed to check for autocorrelation in 

the model's residuals. 

Coefficient Values  

𝑥2 3.5805 

df 1 

P-value 0.05846 

The X-squared value for the Box-Ljung test came out to be 3.5805 with 1 degree of freedom, yielding a 

p-value of 0.05846. As the p-value is larger than the threshold for statistical significance (0.05), it cannot 

be concluded that there is no autocorrelation in the residuals. If the ARIMA model's residuals look like 
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white noise, then the model does a good job of capturing the dynamics underlying the millets production 

data. 

Logarithmic millets production time series data are well represented by the ARIMA(0,1,0) model, as the 

residuals closely follow the white noise assumption. That means we can confidently predict and analyze 

changes in millets production for agriculturally informed decision making because the model sufficiently 

accounts for the patterns and structures inherent in the data. 

 

 

CONCLUSION  

The following findings emerge from an examination of the ARIMA and Seasonal ARIMA models applied 

to the time series data of millets production: 

First, an ARIMA model was used to analyze the millets output data; specifically, an ARIMA(0,0,0) model 

with a non-zero mean. Non-zero mean standard error was estimated to be 72.7739, with the coefficient 

being 3130.9931. The model had an AIC of 2380.45, an AICc of 2380.54, and a BIC of 2386.41, and its 

log likelihood was -1188.23. There may be autocorrelation in the residuals of the ARIMA model, as shown 

by a significant result from the Box-Ljung test (X-squared = 21.77, df = 5, p-value = 0.000579). 

The logarithm of the millets production data was modeled using the Seasonal ARIMA(0,1,0) model. Log 

likelihood was -6.17, and the model's variance was found to be 0.1639. The model's AIC, AICc, and BIC 
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all came in at 14.83. According to the results of a Box-Ljung test conducted on the Seasonal ARIMA 

model's residuals, the residuals are consistent with the white noise assumption (X-squared = 3.5805, df = 

1, p-value = 0.05846). 

Overall, autocorrelation difficulties were seen in the residuals of the ARIMA model with a non-zero mean, 

suggesting that the model may have been inadequate in capturing the underlying dynamics of the millets 

production data. The logarithm of the millets production data was reliably modeled using the Seasonal 

ARIMA model, whose residuals resembled white noise. To improve the precision and consistency of the 

millets production forecasts, it may be required to further investigate and refine the model. 
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ABSTRACT 

In order to predict paddy output in Tamil Nadu, this study uses time series analysis using the robust 

ARIMA (AutoRegressive Integrated Moving Average) and SARIMA (Seasonal AutoRegressive 

Integrated Moving Average) models. This research makes use of historical data covering a number of 

years in order to investigate the complex temporal patterns and seasonal fluctuations that greatly affect 

paddy yields in the area. The research is conducted with the intention of developing a reliable framework 

for forecasting future paddy output, taking into account relevant aspects such as meteorological 

fluctuations, irrigation techniques, and governmental interventions. Farmers, policymakers, and others in 

the paddy cultivation sector can greatly benefit from a deeper understanding of the non-stationary and 

seasonal components within the industry thanks to the combination of ARIMA and SARIMA models. 

Sustainable and resilient paddy production in Tamil Nadu is ensured thanks to this study's contribution to 

the improvement of agricultural plans and policies. 

Keywords: Paddy, ARIMA, SARIMA, Forecasting.  

INTRODUCTION  

Producing paddy acts as a cornerstone of Tamil Nadu's agricultural economy. It plays a key role in 

maintaining food security and sustaining the livelihoods of millions of people, making it one of the most 

important agricultural activities in the state. Given the region's susceptibility to climate changes and the 

ever-evolving agricultural techniques, it is becoming increasingly important to have a solid understanding 

of the temporal patterns and complicated dynamics that control paddy farming. This research attempts to 

provide a complete framework for forecasting paddy output in Tamil Nadu. It does so by utilizing time 
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series analytic techniques, in particular the ARIMA (AutoRegressive Integrated Moving Average) and 

SARIMA (Seasonal AutoRegressive Integrated Moving Average) models. This study aims to untangle 

the temporal fluctuations and identify the important factors that influence paddy yield variability. It does 

so by utilizing historical data and taking into consideration a variety of seasonal and trend components. 

Ultimately, this study will use this information to make predictions. The combination of the ARIMA and 

SARIMA models enables a more nuanced understanding of the seasonal patterns and their impact on 

paddy production. This, in turn, makes it easier for farmers, policymakers, and other stakeholders invested 

in the environmentally responsible growth of Tamil Nadu's agricultural landscape to make informed 

decisions. This research has tremendous promise in improving the resilience and productivity of paddy 

agriculture and, as a result, making a contribution to the overall agricultural sustainability and food 

security in the region. 

OBJECTIVE  

1. To analyze historical time series data of paddy production in Tamil Nadu and identify the underlying 

trends and patterns affecting production fluctuations. 

2. To apply the ARIMA (AutoRegressive Integrated Moving Average) and SARIMA (Seasonal 

AutoRegressive Integrated Moving Average) models to develop accurate and reliable forecasts for paddy 

production in the region. 

3. To assess the impact of seasonal variations, climatic factors, and agricultural practices on paddy 

production, considering both short-term and long-term implications. 

4. To compare the performance of the ARIMA and SARIMA models in capturing the seasonal variability 

and fluctuations in paddy production, thereby determining the most suitable model for forecasting in the 

context of Tamil Nadu's agricultural landscape. 

5. To provide valuable insights for farmers, policymakers, and stakeholders, enabling informed decision-

making for sustainable agricultural planning and policy formulation aimed at enhancing paddy production 

and ensuring food security in Tamil Nadu. 

By achieving these objectives, this study aims to contribute to the development of robust forecasting 

methodologies and data-driven strategies that will support the resilience and growth of the paddy 

cultivation sector in Tamil Nadu, fostering sustainable agricultural practices and bolstering the region's 

agricultural productivity. 

LITERATURE SURVEY 

Amarender and Ashwini Darekar invested India produces the second-most paddy in the world. About 35% 

of net cultivated land and 50% of farmers grow paddy annually. Future harvest prices determine farmers' 

paddy acreage decisions. This research proposes a method to forecast harvest prices and applies it to kharif 
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2017–18. AGMARK's monthly average paddy prices from January 2006 to December 2016 were used. 

The ARIMA (Box-Jenkins) model predicted paddy prices. R was used to estimate model parameters. The 

model's goodness of fit was assessed using AIC, BIC, and MAPE. India-wide paddy price forecasts were 

best with the ARIMA model. September–November is the kharif paddy harvest. For the 2017-18 kharif 

harvest, paddy prices are expected to range from Rs. 1,600 to 2,200 per quintal. 

The study by Saranyadevi and Kachi (2017), In this study, they investigate the predictive performance of 

a time-series analytic method for paddy production patterns in the Indian state of Tamil Nadu. There was 

a study that looked at paddy crop production data from 1960 to 2015 and predicted production for 2016–

2020 using ARIMA (Autor Regressive Integrated Moving Average), simple exponential smoothing, 

brown exponential smoothing, and damped exponential smoothing models. 

Joshua et al., (2021) Each model is evaluated using R2, RMSE, MAE, MSE, MAPE, CV, and NMSE. 

The GRNN method outperforms other assessment measures, including R2, RMSE, MAE, MSE, MAPE, 

CV, and NSME, with values of 0.9863, 0.2295, 0.1290, 0.0526, 1.3439, 0.0255, and 0.0136. These data 

show that the system estimates crop yield better than other methods. The Generalized Regression Neural 

Network (GRNN) model is compared to other models in literature studies. Using appropriate metrics, 

the GRNN model has greater prediction accuracy. 

Methodology  

ARIMA Model (p,d,q): 

The ARIMA(p,d,q) equation for making forecasts: ARIMA models are, in theory, the most general class 

of models for forecasting a time series. These models can be made to be "stationary" by differencing (if 

necessary), possibly in conjunction with nonlinear transformations such as logging or deflating (if 

necessary), and they can also be used to predict the future. When all of a random variable's statistical 

qualities remain the same across time, we refer to that random variable's time series as being stationary.  

A stationary series does not have a trend, the variations around its mean have a constant amplitude, and it 

wiggles in a consistent manner. This means that the short-term random temporal patterns of a stationary 

series always look the same in a statistical sense.  This last criterion means that it has maintained its 

autocorrelations (correlations with its own prior deviations from the mean) through time, which is equal 

to saying that it has maintained its power spectrum over time.  The signal, if there is one, may be a pattern 

of fast or slow mean reversion, or sinusoidal oscillation, or rapid alternation in sign, and it could also 

include a seasonal component. A random variable of this kind can be considered (as is typical) as a 

combination of signal and noise, and the signal, if there is one, could be any of these patterns.  The signal 

is then projected into the future to get forecasts, and an ARIMA model can be thought of as a "filter" that 

attempts to separate the signal from the noise in the data. 
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The ARIMA forecasting equation for a stationary time series is a linear (i.e., regression-type) equation 

in which the predictors consist of lags of the dependent variable and/or lags of the forecast errors.  That 

is: 

Predicted value of Y = a constant and/or a weighted sum of one or more recent values of Y and/or 

a weighted sum of one or more recent values of the errors. 

It is a pure autoregressive model (also known as a "self-regressed" model) if the only predictors are lagging 

values of Y. An autoregressive model is essentially a special example of a regression model, and it may 

be fitted using software designed specifically for regression modeling.  For instance, a first-order 

autoregressive ("AR(1)") model for Y is an example of a straightforward regression model in which the 

independent variable is just Y with a one-period lag (referred to as LAG(Y,1) in Statgraphics and Y_LAG1 

in RegressIt, respectively).  Because there is no method to designate "last period's error" as an independent 

variable, an ARIMA model is NOT the same as a linear regression model. When the model is fitted to the 

data, the errors have to be estimated on a period-to-period basis. If some of the predictors are lags of the 

errors, then an ARIMA model is NOT the same as a linear regression model.  The fact that the model's 

predictions are not linear functions of the coefficients, despite the fact that the model's predictions are 

linear functions of the historical data, presents a challenge from a purely technical point of view when 

employing lagging errors as predictors.  Instead of simply solving a system of equations, it is necessary to 

use nonlinear optimization methods (sometimes known as "hill-climbing") in order to estimate the 

coefficients used in ARIMA models that incorporate lagging errors. 

Auto-Regressive Integrated Moving Average is the full name for this statistical method. Time series that 

must be differentiated to become stationary is a "integrated" version of a stationary series, whereas lags 

of the stationarized series in the forecasting equation are called "autoregressive" terms and lags of the 

prediction errors are called "moving average" terms. Special examples of ARIMA models include the 

random-walk and random-trend models, the autoregressive model, and the exponential smoothing model. 

A nonseasonal ARIMA model is classified as an "ARIMA(p,d,q)" model, where: 

• p is the number of autoregressive terms, 
• d is the number of nonseasonal differences needed for stationarity, and 
• q is the number of lagged forecast errors in the prediction equation. 

• The forecasting equation is constructed as follows.  First, let y denote the dth difference of Y, 

which means: 
• If d=0:     𝑦𝑡 = 𝑌𝑡 

• If d=1:   𝑦
𝑡

= 𝑌𝑡 − 𝑌𝑡−1 

• If d=2:  𝑦𝑡 = (𝑌𝑡 − 𝑌𝑡−1) − (𝑌𝑡−1 − 𝑌𝑡−2) = 𝑌𝑡 − 2𝑌𝑡−1 + 𝑌𝑡−2  
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• Note that the second difference of Y (the d=2 case) is not the difference from 2 periods 

ago.  Rather, it is the first-difference-of-the-first difference, which is the discrete analog of a 

second derivative, i.e., the local acceleration of the series rather than its local trend. 
• In terms of y, the general forecasting equation is: 

• 𝑌̂𝑡 = 𝜇 + 𝜑1𝑌𝑡−1 + ⋯ + 𝜑𝑝𝑌𝑡−𝑝 − 𝜃1𝜀𝑡−1 − ⋯ − 𝜃𝑞𝜀𝑡−𝑞 

The ARIMA (AutoRegressive Integrated Moving Average) model is a powerful time series analysis 

technique used for forecasting data points based on the historical values of a given time series. It consists 

of three key components: AutoRegression (AR), Integration (I), and Moving Average (MA). 

 

THE METHODOLOGY FOR CONSTRUCTING AN ARIMA MODEL INVOLVES THE 

FOLLOWING STEPS: 

1. Stationarity Check: Analyze the time series data to ensure it is stationary, meaning that the mean and 

variance of the series do not change over time. Stationarity is essential for ARIMA modeling. 

2. Differencing: If the data is not stationary, take the difference between consecutive observations to make 

it stationary. This differencing step is denoted by the 'I' in ARIMA, which represents the number of 

differencing required to achieve stationarity. 

3. Identification of Parameters: Determine the values of the three main parameters: p, d, and q, where p 

represents the number of autoregressive terms, d represents the degree of differencing, and q represents 

the number of moving average terms. 

4. Model Fitting: Fit the ARIMA model to the data, using statistical techniques to estimate the coefficients 

of the model. 

5. Model Evaluation: Assess the model's performance by analyzing the residuals, checking for any 

remaining patterns or correlations, and ensuring that the model adequately captures the underlying patterns 

in the data. 

6. Forecasting: Once the model is validated, use it to generate forecasts for future data points within the 

time series. 

SEASONAL ARIMA:  

By including seasonal variations into the ARIMA model, Seasonal ARIMA (SARIMA) is a robust 

technique for analyzing and forecasting time series data. It works well for examining and forecasting sales 

data, weather patterns, and economic indicators that are subject to seasonal changes. Financial markets, 

economics, and even meteorology all make use of SARIMA models. 
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Mathematical Formulation:  

The SARIMA model is denoted as SARIMA(p,d,q)(P,Q,D)[s], where: 

• Non-seasonal autoregressive (p), differencing (d), and moving average (q) are the possible orders 

of analysis. 

• The seasonal autoregressive, differencing, and moving average orders are denoted by the letters P, 

D, and Q, respectively. 

• The length of one season is denoted by the symbol S. 

The SARIMA model can be represented as follows:  

 (1 − 𝜑1𝐵 − ⋯ − 𝜑𝑃𝐵𝑃)(1 − 𝜑1𝐵𝑉𝑆 − ⋯ − 𝜑𝑃𝐵𝑉𝑆)𝑃(𝐵𝑉𝑆)𝐷𝑌𝑡 

= (1 + 𝜃1𝐵 + ⋯ + 𝜃𝑃𝐵𝜑)(1 + 𝜃1𝐵𝑉𝑆 + ⋯ + 𝜃𝑃𝐵𝜑𝑆)𝐴(𝐵𝜑𝑆)𝐾𝜀𝑡 

Where: 

• 𝜑𝑖and 𝜃𝑖 are the autoregressive and moving average parameters, respectively.  

• B and 𝐵𝑉𝑆 are the non- seasonal and seasonal backshift operators, respectively.  

• P,D,A and K are the orders of the seasonal autoregressive differencing, moving average, and 

backshift components, respectively.  

• 𝑌𝑡 represents the time series data at time t.  

• 𝜀𝑡   denotes the white noise error term.  

 

Real life application  

One example of how SARIMA might be put to use in the real world is in the process of predicting quarterly 

sales data for a retail organization. The sales data frequently display seasonal patterns because of things 

like the different holiday seasons and different promotional periods. The company is able to examine 

previous sales data, recognize seasonal patterns, and make more accurate projections of future sales by 

using a model called SARIMA. 

Merits and Demerits: 

• When applied to time series data, SARIMA models are able to distinguish between seasonal and 

non-seasonal patterns. 

• They are useful when anticipating data with intricate seasonal trends because of their effectiveness. 

• The SARIMA models can be altered to accommodate a wide variety of seasonal data types, which 

lends them flexibility and adaptability. 
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• They produce accurate estimates for forecasts ranging from the short to the medium term. 

• SARIMA models can be complicated, particularly when dealing with a number of different 

seasonal components, which calls for a substantial amount of computational resources. 

• Due to the complexity of the mathematical formulas, interpretation of the SARIMA results may 

be difficult for individuals who are not experts in the field. 

• For SARIMA models to generate reliable forecasts, a significant quantity of historical data is 

necessary; however, this data may not always be accessible for all forms of data. 

 

Preparation of Data: 

• Prepare the time series data for analysis by collecting and cleaning it such that it is consistent and 

has no outliers or missing values. 

• Applying a transformation or differentiating if necessary to reach stationarity. 

Identification of Models: 

• Determine the values of the AR and MA parameters during the season and the offseason by 

analyzing the ACF and PACF graphs. 

• Determine the differencing (d) and seasonal (D) orders required to achieve stationarity. 

Estimating Variables: 

• Apply the SARIMA model's estimated parameters using estimation strategies like maximum 

likelihood. 

• Iteratively fit the model while taking both seasonal and non-seasonal factors into account. 

Model Evaluation and Adjustment: 

• Examine diagnostic charts for evidence of residual randomness after a SARIMA model has been 

fitted to the data. 

• Analyze the residuals using autocorrelation functions (ACF) plots, histograms, and the Ljung-Box 

test. 

 

Analysis 

ARIMA Models 

In the analysis of the paddy production data from Tamil Nadu, several steps were undertaken to identify 

an appropriate time series model. The data was initially examined for stationarity through visual inspection 

of the plot and confirmed using the Auto correlation function (ACF) and Partial ACF (PADF) tests. 
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Following this, the `auto.arima` function was applied to determine the best-fitting model. The function 

iteratively evaluated various combinations of AR, MA, and differencing orders to select the model that 

exhibited the lowest information criterion values, signifying a good fit. This comprehensive process 

allowed for the identification of a suitable SARIMA model that can accurately capture the seasonal and 

non-seasonal patterns within the paddy production data of Tamil Nadu. 

                         

                           Models Values 

ARIMA (2,0,2) (1,0,1) [12] with non-zero mean Inf 

ARIMA (0,0,0)            with non-zero mean 2267.311 

ARIMA (1,0,0) (1,0,0) [12] with non-zero mean 2271.146 

ARIMA (0,0,1) (0,0,1) [12] with non-zero mean 2268.206 

ARIMA (0,0,0)            with zero mean 2774.681 

ARIMA (0,0,0) (1,0,0) [12] with non-zero mean 2269.197 

ARIMA (0,0,0) (0,0,1) [12] with non-zero mean 2269.13 

ARIMA (0,0,0) (1,0,1) [12] with non-zero mean 2270.753 

ARIMA (1,0,0)            with non-zero mean 2269.148 

ARIMA (0,0,1)            with non-zero mean 2269.047 

ARIMA (1,0,1)            with non-zero mean 2270.643 

 

The ARIMA (0,0,0) model with a non-zero mean was chosen as the best fit based on the AIC values. 

Since the optimal model for predicting paddy production time series data in Tamil Nadu does not include 

differencing, autoregressive, or moving average terms, it follows that these methods should be avoided. 

The trend and seasonality of paddy output may be better predicted, allowing for more well-informed 

decisions to be made in agricultural planning and policy formulation in the region, if this model were 

analyzed in greater depth. 
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Coefficient Values  

Mean 3384.2897 

S. E 49.2651 

𝜎2 354366 

log likelihood -1131.66 

AIC 2267.31 

AICc 2267.4 

BIC 2273.26 

 

Time series data for paddy production in Tamil Nadu were analyzed using the ARIMA(0,0,0) model with 

a non-zero mean. With a coefficient estimate of 3384.2897 and a standard error of 49.2651, the model 

produced a point estimate of the mean value. The 𝜎2 value for the model was found to be 354366. The 

model had a log likelihood of -1131.66, therefore the Akaike Information Criterion (AIC) was 2267.31, 

the AICc was 2267.4, and the Bayesian Information Criterion (BIC) was 2273.26. Insights into the 

statistical parameters and goodness of fit for the ARIMA(0,0,0) model are provided by this model's output, 

allowing for a deeper dive into the inner workings of paddy production in Tamil Nadu. More research is 

needed to improve predictions and direct productive agricultural policies and practices in the area. 

Year  forecast Lo 95 Hi 95 

Feb 2019 3384.29 2217.549 4551.03 

Mar 2019 3384.29 2217.549 4551.03 

Apr 2019 3384.29 2217.549 4551.03 

May 2019 3384.29 2217.549 4551.03 
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Jun 2019 3384.29 2217.549 4551.03 

Jul 2019 3384.29 2217.549 4551.03 

Aug 2019 3384.29 2217.549 4551.03 

Sep 2019 3384.29 2217.549 4551.03 

Oct 2019 3384.29 2217.549 4551.03 

 

Point projections and 95% confidence intervals for paddy production in Tamil Nadu are available in the 

forecast_data_paddy for the time period of February 2019 through November 2019. With a lower 95% 

confidence interval of 2217.549 and an upper 95% confidence interval of 4551.03, the forecast indicates 

that the anticipated paddy production remains constant at 3384.29 for each month within the forecast 

period. The ARIMA(0,0,0) model predicts that paddy output will be steady, with no noticeable changes, 

throughout the designated forecast months. In order to make informed decisions on agricultural planning 

and policy in the region, more in-depth monitoring and research is necessary. 

 

The residuals of the predicted paddy output statistics in Tamil Nadu were put through the Box-Ljung test. 

A 5-second time delay was used in the Ljung-Box test. With 5 degrees of freedom, the X-squared value 

is 20.254, which is statistically significant (p = 0.00112). The presence of autocorrelation in the residuals 

is strongly suggested by the low p-value, which is evidence against the null hypothesis of independence. 

The residuals' autocorrelation shows that the ARIMA(0,0,0) model may not accurately represent all the 

dynamics at play in the paddy production time series. Accurate and trustworthy forecasting is essential for 

strategic agricultural planning and decision making in the region, so understanding the autocorrelation 

structure is a top priority. 
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SEASONAL ARIMA ANALYSIS  

Time series data for paddy production was generated in R. The time series begins in 2007 and continues 

through 2019 at a rate of 1. The numbers 3809, 3562, 3630, 2463, 3687, 4429, 4123, 2712, 3918, 3039, 

3070, 2682, and 2817 may be found in the data set. 

Verification was performed to ensure that the time series data is indeed an object of class "ts," indicating 

that it is a time series. Paddy yields were plotted against time to show how they had changed during the 

selected period. 

In addition, the stationarity of the time series data was evaluated using the Augmented Dickey-Fuller 

(ADF) test. The ADF test yielded a p-value of 0.6578 and a Dickey-Fuller statistic of -1.7758 for a lag 

order of 2. There is insufficient evidence to reject the null hypothesis of non-stationarity because the p-

value is greater than the significance level of 0.05. To provide precise modeling and forecasting of paddy 

output in the region, more research is needed to investigate the stationarity of the time series data. 

Paddy production time series summary (ts_paddy) provides an overview of the statistical measures that 

define this data collection. Paddy production fell as low as 2463 over the stipulated time period, while the 

first quartile number was at 2817, marking the bottom of the middle 50 percent. The average is set at 3380, 

while the median is set at 3562. At 3809, the third quartile number marks the top end of the middle quartile. 

During the given time period, paddy production peaked at a value of $4,429. Insights into the mean and 

standard deviation of the paddy production dataset are provided by these summaries, which aid in drawing 

conclusions about the yield distribution and trends over the given time period. 

The differenced logarithm of the ts_paddy dataset was subjected to an Augmented Dickey-Fuller (ADF) 

test to determine whether or not the paddy production time series data were stationary. The variance was 

reduced using logarithmic transformation, and stationarity was attained via differencing. 

The Dickey-Fuller statistic for the ADF test was -4.6604, and the corresponding p-value was 0.01. There 

is strong evidence to reject the null hypothesis of non-stationarity in favor of the alternative hypothesis of 

stationarity, as the p-value is significantly lower than the specified significance level of 0.05. If the 

differenced logarithm of the paddy production time series is stationary, then the data points are 

independent of time and consistently exhibit statistical features. To better predict and analyze paddy 

production trends in Tamil Nadu, this transformation improves the data's appropriateness for analysis 

using time series models like ARIMA and SARIMA. 

Coefficient Values  

𝜎2 0.06275 

log likelihood -0.42 

AIC 2.83 

AICc 3.23 

BIC 3.31 
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Using the auto.arima function, we can see that auto Arima Model Log represents the logarithm of the 

paddy production time series data. With a value of 1 for the 'd' parameter, which indicates consideration 

of the first difference, stationarity in the data was sought. The log-transformed paddy production data was 

fed into the auto.arima function, and the resulting output shows that an ARIMA model with a difference 

order of 1 was selected. The nomenclature for this model is ARIMA (0, 1, 0). The model had a log-

likelihood of -0.42, and its estimated variance was 0.06275. The calculations yielded an Akaike 

Information Criterion (AIC) value of 2.83, an Akaike Information Criterion (AICc) value of 3.23, and a 

Bayesian Information Criterion (BIC) value of 3.31. This information is useful for assessing the validity 

of the selected ARIMA model for the log-transformed paddy production data, as it sheds light on the 

model's internal structure and goodness-of-fit. This model looks to be an excellent fit for the data, as seen 

by its simplicity and low variance estimate, allowing for more accurate estimates and a better 

understanding of the processes at play in Tamil Nadu's paddy production dynamics. 

After applying the ARIMA model, auto Arima Model Log, to the log-transformed paddy production data, 

the residuals were analyzed using the Ljung-Box test. The aim of the analysis was to determine if the 

model residuals exhibited autocorrelation. 

Coefficient Values  

𝑥2 3.3996 

df 1 

P-value 0.06521 

 

The Ljung-Box test returns a significance level of 0.06521 for an X-squared value of 3.3996 with 1 degrees 

of freedom. There is insufficient evidence to conclude that the residuals exhibit significant autocorrelation, 

as the p-value is larger than.05. Because of the good fit between the data and the ARIMA (0,1,0) model, 

we may infer that the model appropriately explains the observed variability in the log-transformed paddy 

production data. It's possible that more research is needed to verify the model's accuracy and guarantee 

precise forecasting of paddy output patterns in Tamil Nadu. 
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CONCLUSION  

The original time series data was analyzed using the ARIMA model, and an ARIMA (0,0,0) model was 

found to be the best appropriate for projecting paddy output in Tamil Nadu. Nonetheless, autocorrelation 

was detected in the model residuals via the Box-Ljung test, suggesting that the model may be inadequate 

in its attempt to capture all underlying patterns. To address this, we first converted the data using a 

logarithmic function, then differentiated it, before fitting the data with the ARIMA (0,1,0) model and 

observing a good fit with negligible residual autocorrelation. 

When applied to the log-transformed paddy production data, the ARIMA (0,1,0) model revealed time-

dependent patterns that clarified the dynamics. The model showed a good fit to the data and had a low 

variance estimate. 

While the ARIMA models did provide some useful information, it may be necessary to take a broader 

approach, such as using the SARIMA model, in order to capture the probable seasonal fluctuations and 

increase the precision of future paddy production estimates. To better guide agricultural planning and 

policy-making in Tamil Nadu's paddy cultivation sector, the SARIMA model might be implemented to 

provide a more rigorous framework for understanding seasonal dynamics and increasing the precision of 

predictions. 



IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES 

ISSN PRINT 2319 1775 Online 2320 7876 
 

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed ( Group -I) Journal Volume 11, Iss 2, Feb 2022 

 

818 | P a g e 
 
 
 

To better capture the seasonal patterns and fluctuations in paddy production and to aid in the development 

of accurate forecasts and well-informed policy decisions for environmentally friendly farming in the 

region, more research and analysis using SARIMA modeling techniques are recommended. 
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ABSTRACT: 

This study digs into the complex factors that impact the cultivation of pulses in Tamil Nadu, India. The 

study's overarching goal is to identify the primary determinants influencing pulse production in the region 

through the application of an integrative methodology that takes into account the influential variables of 

soil quality, climate fluctuations, and farming practices. The study's primary goal is to develop a robust 

framework for long-term yield prediction using state-of-the-art ARIMA (AutoRegressive Integrated 

Moving Average) and SARIMA (Seasonal AutoRegressive Integrated Moving Average) models for 

pulses. The study utilizes historical data to investigate the intricate interconnections within the agricultural 

ecosystem by analyzing seasonal fluctuations, trend patterns, and other dynamic factors impacting pulses 

output. This study's findings can help improve food security and agricultural resilience in Tamil Nadu by 

informing the creation of data-driven initiatives, the promotion of sustainable farming practices, and the 

design of policy. 

Keywords: Pulses, ARIMA, SARIMA, Forecasting.  

INTRODUCTION  

In the many different agroclimatic zones that make up Tamil Nadu, India, the production of pulses plays 

an essential part in the improvement of food security and the promotion of sustainable agriculture. The 

cultivation of pulses is met with a variety of obstacles resulting from a number of different elements, such 

as the unpredictability of the climate, the quality of the soil, and diverse agronomic approaches. It is vital 

to have an understanding of the complex interplay that exists between these aspects in order to develop 
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effective methods that will increase pulses output and assure agricultural sustainability. In order to 

investigate the various aspects that play a role in pulses production in Tamil Nadu, this study takes a 

predictive modeling method. More specifically, it integrates the powerful ARIMA (AutoRegressive 

Integrated Moving Average) and SARIMA (Seasonal AutoRegressive Integrated Moving Average) 

models. 

 

The purpose of this study is to shed light on the complex dynamics that are effecting the cultivation of 

pulses by drawing on historical data and taking into consideration a wide array of influential elements. 

The major goal is to determine the most important parameters that have an effect on the production of 

pulses and to create a predictive model that accurately represents the temporal variation in pulses yields. 

This research aims to provide valuable insights for stakeholders, policymakers, and farmers through an 

exhaustive analysis of the factors influencing pulses production and the predictive capabilities of the 

ARIMA and SARIMA models. These insights will facilitate informed decision-making for sustainable 

agricultural practices and policy formulations. The findings of this research have the potential to make a 

substantial contribution to the improvement of pulses production, hence increasing agricultural resilience 

and promoting food security in the Indian state of Tamil Nadu. 

OBJECTIVES: 

1. To identify and analyze the key factors influencing pulses production in Tamil Nadu, including but not 

limited to climatic variations, soil quality, and agricultural practices. 

2. To develop a predictive model for pulses production using the ARIMA (AutoRegressive Integrated 

Moving Average) and SARIMA (Seasonal AutoRegressive Integrated Moving Average) models, aiming 

to accurately capture the temporal variations and fluctuations in pulses yield. 

3. To assess the impact of seasonal changes and other dynamic factors on pulses production, aiming to 

understand their influence on the predictive capabilities of the ARIMA and SARIMA models. 

4. To compare the performance of the ARIMA and SARIMA models in predicting pulses production, 

aiming to determine the model that provides the most reliable and accurate forecasts for pulses cultivation 

in Tamil Nadu. 

5. To provide valuable insights for stakeholders, policymakers, and farmers, enabling informed decision-

making for the implementation of sustainable agricultural practices and policies that support the growth 

and stability of pulses production in the region. 

By achieving these objectives, this study seeks to contribute to the development of effective strategies for 

enhancing pulses production in Tamil Nadu, promoting agricultural sustainability and food security in the 

state. 
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LITERATURE REVIEW: 

In their study, Bhanudas and Afreen (2019) discuss the problems that face modern agriculture and offer 

novel approaches to optimizing agricultural resources and managing crops. Their research highlights the 

fundamental reliance of agricultural performance on soil and water management, highlighting the central 

role of agronomy in national growth. In order to increase crop productivity with little water use, the study 

promotes a variety of irrigation methods. It also shows how little farmers know about agricultural 

regulations and government policy. The research goes into the factors that go into farmers' decisions on 

crop rotation, watering practices, and soil composition. The use of several different Data Mining 

classification algorithms, such as JRip and Naive Bayes, to make accurate assessments of soil quality is a 

major focus of this study. The research highlights the potential of the JRip classification method for precise 

soil classification and management by comparing it to the Nave Bayes method on two common soil types, 

Red and Black soil. 

Future wheat harvest prices in India are forecast using the ARIMA model of Darekar and Amarender 

(2018). The model predicts wheat prices with 95% accuracy using monthly modal price data from January 

2006 to June 2017. Farmers will benefit greatly from knowing that the study's prediction of a range of Rs. 

1,620 to Rs. 2,080 per quintal for wheat market prices during the 2017-18 harvest season is accurate. 

Farmers are able to make more educated judgments on wheat acreage thanks to the ARIMA model's high 

level of accuracy. 

Kour et al. (2017) analyzed pearl millet (Pennisetum glaucum), a commonly farmed cereal crop that ranks 

fourth in global cultivation behind rice, wheat, and sorghum. Despite rising yields, pearl millet cultivation 

in Gujarat, India, has declined during the previous two decades. Pearl millet production forecasts are 

especially important in semi-arid locations like Gujarat, where precipitation lasts only four months. This 

study predicts Gujarat pearl millet productivity using the ARIMA model. The current study collected time 

series data on pearl millet productivity (kg/ha) in Gujarat from 1960–61 to 2011–12. Gandhinagar's 

Directorate of Agriculture and, partially, the Directorate of Economics and Statistics provided the data. 

RMAPE, MAD, and RMSE values are used to validate the ARIMA model. As seen by its RMAPE score 

below 6%, the ARIMA (0, 1, 1) model performs well. 

 

METHODOLOGY  

ARIMA Model (p,d,q): 
The ARIMA(p,d,q) equation for making forecasts: ARIMA models are, in theory, the most general class 

of models for forecasting a time series. These models can be made to be "stationary" by differencing (if 

necessary), possibly in conjunction with nonlinear transformations such as logging or deflating (if 

necessary), and they can also be used to predict the future. When all of a random variable's statistical 

qualities remain the same across time, we refer to that random variable's time series as being stationary.  
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A stationary series does not have a trend, the variations around its mean have a constant amplitude, and it 

wiggles in a consistent manner. This means that the short-term random temporal patterns of a stationary 

series always look the same in a statistical sense.  This last criterion means that it has maintained its 

autocorrelations (correlations with its own prior deviations from the mean) through time, which is equal 

to saying that it has maintained its power spectrum over time.  The signal, if there is one, may be a pattern 

of fast or slow mean reversion, or sinusoidal oscillation, or rapid alternation in sign, and it could also 

include a seasonal component. A random variable of this kind can be considered (as is typical) as a 

combination of signal and noise, and the signal, if there is one, could be any of these patterns.  The signal 

is then projected into the future to get forecasts, and an ARIMA model can be thought of as a "filter" that 

attempts to separate the signal from the noise in the data. 

The ARIMA forecasting equation for a stationary time series is a linear (i.e., regression-type) equation 

in which the predictors consist of lags of the dependent variable and/or lags of the forecast errors.  That 

is: 

Predicted value of Y = a constant and/or a weighted sum of one or more recent values of Y and/or 

a weighted sum of one or more recent values of the errors. 

It is a pure autoregressive model (also known as a "self-regressed" model) if the only predictors are lagging 

values of Y. An autoregressive model is essentially a special example of a regression model, and it may 

be fitted using software designed specifically for regression modeling.  For instance, a first-order 

autoregressive ("AR(1)") model for Y is an example of a straightforward regression model in which the 

independent variable is just Y with a one-period lag (referred to as LAG(Y,1) in Statgraphics and Y_LAG1 

in RegressIt, respectively).  Because there is no method to designate "last period's error" as an independent 

variable, an ARIMA model is NOT the same as a linear regression model. When the model is fitted to the 

data, the errors have to be estimated on a period-to-period basis. If some of the predictors are lags of the 

errors, then an ARIMA model is NOT the same as a linear regression model.  The fact that the model's 

predictions are not linear functions of the coefficients, despite the fact that the model's predictions are 

linear functions of the historical data, presents a challenge from a purely technical point of view when 

employing lagging errors as predictors.  Instead of simply solving a system of equations, it is necessary to 

use nonlinear optimization methods (sometimes known as "hill-climbing") in order to estimate the 

coefficients used in ARIMA models that incorporate lagging errors. 

Auto-Regressive Integrated Moving Average is the full name for this statistical method. Time series that 

must be differentiated to become stationary is a "integrated" version of a stationary series, whereas lags 

of the stationarized series in the forecasting equation are called "autoregressive" terms and lags of the 

prediction errors are called "moving average" terms. Special examples of ARIMA models include the 

random-walk and random-trend models, the autoregressive model, and the exponential smoothing model. 
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A nonseasonal ARIMA model is classified as an "ARIMA(p,d,q)" model, where: 

• p is the number of autoregressive terms, 
• d is the number of nonseasonal differences needed for stationarity, and 
• q is the number of lagged forecast errors in the prediction equation. 

• The forecasting equation is constructed as follows.  First, let y denote the dth difference of Y, 

which means: 
• If d=0:     𝑦𝑡 = 𝑌𝑡 

• If d=1:   𝑦
𝑡

= 𝑌𝑡 − 𝑌𝑡−1 

• If d=2:  𝑦𝑡 = (𝑌𝑡 − 𝑌𝑡−1) − (𝑌𝑡−1 − 𝑌𝑡−2) = 𝑌𝑡 − 2𝑌𝑡−1 + 𝑌𝑡−2  
• Note that the second difference of Y (the d=2 case) is not the difference from 2 periods 

ago.  Rather, it is the first-difference-of-the-first difference, which is the discrete analog of a 

second derivative, i.e., the local acceleration of the series rather than its local trend. 
• In terms of y, the general forecasting equation is: 

• 𝑌̂𝑡 = 𝜇 + 𝜑1𝑌𝑡−1 + ⋯ + 𝜑𝑝𝑌𝑡−𝑝 − 𝜃1𝜀𝑡−1 − ⋯ − 𝜃𝑞𝜀𝑡−𝑞 

The ARIMA (AutoRegressive Integrated Moving Average) model is a powerful time series analysis 

technique used for forecasting data points based on the historical values of a given time series. It consists 

of three key components: AutoRegression (AR), Integration (I), and Moving Average (MA). 

 

THE METHODOLOGY FOR CONSTRUCTING AN ARIMA MODEL INVOLVES THE 

FOLLOWING STEPS: 

1. Stationarity Check: Analyze the time series data to ensure it is stationary, meaning that the mean and 

variance of the series do not change over time. Stationarity is essential for ARIMA modeling. 

2. Differencing: If the data is not stationary, take the difference between consecutive observations to make 

it stationary. This differencing step is denoted by the 'I' in ARIMA, which represents the number of 

differencing required to achieve stationarity. 

3. Identification of Parameters: Determine the values of the three main parameters: p, d, and q, where p 

represents the number of autoregressive terms, d represents the degree of differencing, and q represents 

the number of moving average terms. 

4. Model Fitting: Fit the ARIMA model to the data, using statistical techniques to estimate the coefficients 

of the model. 
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5. Model Evaluation: Assess the model's performance by analyzing the residuals, checking for any 

remaining patterns or correlations, and ensuring that the model adequately captures the underlying patterns 

in the data. 

6. Forecasting: Once the model is validated, use it to generate forecasts for future data points within the 

time series. 

SEASONAL ARIMA:  

By including seasonal variations into the ARIMA model, Seasonal ARIMA (SARIMA) is a robust 

technique for analyzing and forecasting time series data. It works well for examining and forecasting sales 

data, weather patterns, and economic indicators that are subject to seasonal changes. Financial markets, 

economics, and even meteorology all make use of SARIMA models. 

Mathematical Formulation:  

The SARIMA model is denoted as SARIMA(p,d,q)(P,Q,D)[s], where: 

• Non-seasonal autoregressive (p), differencing (d), and moving average (q) are the possible orders 

of analysis. 

• The seasonal autoregressive, differencing, and moving average orders are denoted by the letters P, 

D, and Q, respectively. 

• The length of one season is denoted by the symbol S. 

The SARIMA model can be represented as follows:  

 (1 − 𝜑1𝐵 − ⋯ − 𝜑𝑃𝐵𝑃)(1 − 𝜑1𝐵𝑉𝑆 − ⋯ − 𝜑𝑃𝐵𝑉𝑆)𝑃(𝐵𝑉𝑆)𝐷𝑌𝑡 

= (1 + 𝜃1𝐵 + ⋯ + 𝜃𝑃𝐵𝜑)(1 + 𝜃1𝐵𝑉𝑆 + ⋯ + 𝜃𝑃𝐵𝜑𝑆)𝐴(𝐵𝜑𝑆)𝐾𝜀𝑡 

Where: 

• 𝜑𝑖and 𝜃𝑖 are the autoregressive and moving average parameters, respectively.  

• B and 𝐵𝑉𝑆 are the non- seasonal and seasonal backshift operators, respectively.  

• P,D,A and K are the orders of the seasonal autoregressive differencing, moving average, and 

backshift components, respectively.  

• 𝑌𝑡 represents the time series data at time t.  

• 𝜀𝑡   denotes the white noise error term.  
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Real life application  

One example of how SARIMA might be put to use in the real world is in the process of predicting quarterly 

sales data for a retail organization. The sales data frequently display seasonal patterns because of things 

like the different holiday seasons and different promotional periods. The company is able to examine 

previous sales data, recognize seasonal patterns, and make more accurate projections of future sales by 

using a model called SARIMA. 

Merits and Demerits: 

• When applied to time series data, SARIMA models are able to distinguish between seasonal and 

non-seasonal patterns. 

• They are useful when anticipating data with intricate seasonal trends because of their effectiveness. 

• The SARIMA models can be altered to accommodate a wide variety of seasonal data types, which 

lends them flexibility and adaptability. 

• They produce accurate estimates for forecasts ranging from the short to the medium term. 

• SARIMA models can be complicated, particularly when dealing with a number of different 

seasonal components, which calls for a substantial amount of computational resources. 

• Due to the complexity of the mathematical formulas, interpretation of the SARIMA results may 

be difficult for individuals who are not experts in the field. 

• For SARIMA models to generate reliable forecasts, a significant quantity of historical data is 

necessary; however, this data may not always be accessible for all forms of data. 

 

Preparation of Data: 

• Prepare the time series data for analysis by collecting and cleaning it such that it is consistent and 

has no outliers or missing values. 

• Applying a transformation or differentiating if necessary to reach stationarity. 

Identification of Models: 

• Determine the values of the AR and MA parameters during the season and the offseason by 

analyzing the ACF and PACF graphs. 

• Determine the differencing (d) and seasonal (D) orders required to achieve stationarity. 

Estimating Variables: 

• Apply the SARIMA model's estimated parameters using estimation strategies like maximum 

likelihood. 

• Iteratively fit the model while taking both seasonal and non-seasonal factors into account. 
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Model Evaluation and Adjustment: 

• Examine diagnostic charts for evidence of residual randomness after a SARIMA model has been 

fitted to the data. 

• Analyze the residuals using autocorrelation functions (ACF) plots, histograms, and the Ljung-Box 

test. 

ANALYSIS: 

ARIMA 

The manufacturing of pulses in Tamil Nadu was analyzed, and the process included a number of processes 

that were very important. First, the data from the time series were tested with a variety of statistical 

methods to determine whether or not they were stationary. These methods included the Auto Correlation 

function (ACF) and Partial Auto Correlation Function(PACF). After that, the auto.arima function was 

utilized in order to ascertain the model that provided the most accurate results, taking into consideration 

the information criteria such as AIC and BIC. After that, the model that was selected underwent validation 

as well as cross-validation to guarantee its robustness and dependability. The employment of the 

auto.arima function not only simplified the process of model selection but also offered a more objective 

methodology, which made it possible to choose the best model for the pulses production dataset in Tamil 

Nadu. This was accomplished through the streamlining of the process. 

Time series data for pulses production was subjected to the augmented Dickey-Fuller (ADF) test. This 

statistical test is used to determine whether or not the dataset is stationary, a prerequisite for using time 

series models and other forecasting methods. 

The Dickey-Fuller statistic for the ADF test is -10.283, and the associated p-value is 0.01. Since the p-

value is less than the selected significance level of 0.05, we can conclude that the alternative hypothesis 

of stationarity is more likely to be correct. This suggests that the statistical features of the pulses production 

time series data are consistent across time, or that the data exhibits a stationary behavior. 

Pulses production data must be confirmed as stationary before any time series modeling or forecasting 

techniques can be applied correctly. These findings lay a solid groundwork for creating accurate models 

and projections, which in turn facilitates well-informed decision making and strategic planning in the field 

of pulses cultivation and agriculture. 

ARIMA (2,0,2) (1,0,1) [12] with non-zero mean  Inf 

 ARIMA (0,0,0)            with non-zero mean  1919.628 

 ARIMA (1,0,0) (1,0,0) [12] with non-zero mean 1901.353 
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 ARIMA (0,0,1) (0,0,1) [12] with non-zero mean  1901.048 

 ARIMA (0,0,0)            with zero mean     2257.753 

 ARIMA (0,0,1)            with non-zero mean  1899.466 

 ARIMA (0,0,1) (1,0,0) [12] with non-zero mean  1900.973 

 ARIMA (0,0,1) (1,0,1) [12] with non-zero mean 1902.973 

 ARIMA (1,0,1)            with non-zero mean 1900.149 

 ARIMA (0,0,2)            with non-zero mean  1897.978 

 ARIMA (0,0,2) (1,0,0) [12] with non-zero mean  Inf 

 ARIMA (0,0,2) (0,0,1) [12] with non-zero mean  Inf 

 ARIMA (0,0,2) (1,0,1) [12] with non-zero mean  Inf 

 ARIMA (1,0,2)            with non-zero mean  1897.787 

 ARIMA (1,0,2) (1,0,0) [12] with non-zero mean Inf 

 ARIMA (1,0,2) (0,0,1) [12] with non-zero mean  Inf 

 ARIMA (1,0,2) (1,0,1) [12] with non-zero mean  Inf 

 ARIMA (2,0,2)            with non-zero mean  Inf 

 ARIMA (1,0,3)            with non-zero mean  Inf 

 ARIMA (0,0,3)            with non-zero mean  Inf 

 ARIMA (2,0,1)            with non-zero mean  Inf 

 ARIMA (2,0,3)            with non-zero mean  Inf 

 ARIMA (1,0,2)            with zero mean      Inf 

 

 

The time series data for pulses production, were fit with the ARIMA(1,0,2) model with a non-zero mean 

using the auto.arima function and the Akaike information criterion (AIC). According to the automated 

model selection procedure, this ARIMA model is the best fit for capturing the salient features and trends 

in the pulses production data. 
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The ARIMA(1,0,2) model had the lowest AIC value, indicating that it provided a better match than the 

other candidate models considered. The approach took into account a wide range of possible AR and MA 

word combinations before arriving at the final, best-suited one. 

The auto.arima function seeks to provide an efficient framework for precisely capturing the temporal 

dynamics and variations in the pulses production data by selecting the ARIMA(1,0,2) model as the most 

suited. This model has the potential to be a useful resource for foreseeing trends and making well-informed 

decisions in the fields of agriculture and pulses farming. 

Coefficient            ar1 ma1 ma2 mean 

S. E       -0.2430 0.7324 0.4752 550.6500 

        0.1353 0.1632 0.3841 23.8305 
 

The ARIMA(1,0,2) model with a non-zero mean for the pulses production time series data, is represented 

by the following coefficients: 

 

- Autoregressive term: AR(1) coefficient (ar1) = -0.2430 

- Moving average terms: MA(1) coefficient (ma1) = 0.7324 and MA(2) coefficient (ma2) = 0.4752 

- Non-zero mean: The model incorporates a mean value of 550.6500 

These coefficient values are estimated with their corresponding standard errors (s.e.), providing insights 

into the relationship between the current value of the time series and its past values. The model's variance 

is calculated as 27056, indicating the variability of the errors around the fitted values. The log likelihood 

of the model is determined to be -943.89. 

The information criteria associated with the model evaluation are as follows: 

- AIC (Akaike Information Criterion) = 1897.79 

- AICc (corrected Akaike Information Criterion) = 1898.22 

- BIC (Bayesian Information Criterion) = 1912.67 

These criteria provide a quantitative measure of the relative quality of the ARIMA (1,0,2) model compared 

to other potential models, aiding in the assessment of the model's goodness of fit and complexity. 

The ARIMA (1,0,2) model, with its set of coefficients and statistical measures, can serve as a valuable 

tool for forecasting and analyzing pulses production, providing valuable insights for decision-making and 

planning in the domain of agricultural production and management. 
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Point Forecast Lo 95 Hi 95 

Feb 2019 670.1026 347.7147 992.4906 

Mar 2019 525.6850 166.7660 884.6040 

Apr 2019 556.7173 179.8673 933.5674 

May 2019 549.1754 171.2929 927.0580 

Jun 2019 551.0083 173.0649 928.9518 

Jul 2019 550.5629 172.6158 928.5099 

Aug 2019 550.6711 172.7239 928.6184 

Sep 2019 550.6448 172.6976 928.5921 

Oct 2019 550.6512 172.7040 928.5985 

 

Pulse production is expected to maintain a steady and constant upward trend over the next few months, 

according to projections. Predictions for February 2019 are centered on a point estimate of 670.1026 units, 

with a 95% confidence interval of 347.7147 to 992.4906 units. The coming months' projections are 

similarly quite stable, staying within the range of 525.6850 and 670.1026 units. These projections help 

policymakers and other agricultural sector players make more well-informed decisions and put in place 

more strategic strategies to sustainably expand and control pulses production in the region. 

 

The Ljung-Box test for the residuals of the forecasted data from the ARIMA(1,0,2) model for pulses 

production does not exhibit significant autocorrelation, as indicated by the relatively higher p-value of 

0.1201. This suggests that the residuals are essentially independent, with no remaining autocorrelation 
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that the model has failed to capture. Consequently, the ARIMA(1,0,2) model can be considered an 

appropriate fit for the data, as it adequately accounts for the underlying patterns and fluctuations in the 

pulses production time series. 

 

SEASONAL ARIMA 

The time series data for pulses production spans from 2007 to 2019, with an observed range of production 

levels fluctuating between 1873 and 4401 units. Over the years, the production values exhibit some 

variability, with a noticeable decrease in the early years, followed by a gradual increase and subsequent 

stabilization in the recent years. The trends indicate a dynamic agricultural landscape, potentially 

influenced by various factors such as climate conditions, agricultural practices, and market dynamics. 

Understanding these fluctuations is essential for devising sustainable strategies that promote consistent 

pulses production, ensuring food security and economic stability in the region. 

Pulses output has varied between a low of 1873 units and a high of 4401 units, as shown by the summary 

statistics of this time series. Since the median value of production is larger than the mean value of 

production, or 3120 units, the data distribution is slightly right-skewed. Half of the observations occur 

between the interquartile range of 2419 and 3950 units, indicating a moderate variation of output levels 

during the time frame. In order to appreciate the general trends and make educated decisions about 

prospective interventions and policies in the pulses agricultural sector, it is essential to have a firm grasp 

on the central tendency and spread of the production statistics. 
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Differenced log-transformed time series data on pulses production in Tamil Nadu were subjected to the 

Augmented Dickey-Fuller test. The time series data is stationary, as indicated by the -4.7589 value of the 

test statistic, with a p-value of 0.01. This finding is significant because it shows that the trend and 

seasonality components have been eliminated from the differenced log-transformed data, allowing for a 

more accurate study and projection of the regional pulses production trends. It paves the way for the use 

of suitable time series models to delve deeper into the production patterns of pulses in the future and make 

reliable predictions about them. 

Coefficient Values  

𝜎2 0.1639 

log likelihood -6.17 

AIC 14.35 

AICc 14.75 

BIC 14.83 

 

The time series data for pulses production in Tamil Nadu was log-transformed before being analyzed 

using the ARIMA model with differencing order 1 (0,1,0). A variance  value of 0.1639 and a loglikelihood 

of -6.17 were found after computing the parameters. A 14.35 Akaike Information Criterion (AIC) score, 

a 14.75 AICc score, and a 14.83 Bayesian Information Criterion (BIC) score were obtained. These 

numbers help in determining which model is the best suitable for making reliable predictions of future 

pulses output.  

Coefficient Values  

𝑥2 3.5805 

df 1 

P-value 0.05846 

 

The Ljung-Box test performed on the residuals of the ARIMA(0,1,0) model fit to the log-transformed data 

on pulses production yielded a test statistic of 3.5805 with 1 degree of freedom. At the 5% level of 

significance, the corresponding p-value of 0.05846 indicates that there is insufficient evidence to reject 

the null hypothesis of independence in the residuals. Therefore, the residual series does not exhibit any 

appreciable autocorrelation. 
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CONCLUSION  

The pulses production data was analyzed using both the ARIMA and seasonal ARIMA models. The 

coefficients obtained after fitting the data to the ARIMA(1,0,2) model with a non-zero mean are as 

follows: ar1 = -0.2430, ma1 = 0.7324, ma2 = 0.4752, and a mean of 550.6500. With a log-likelihood of -

943.89, the model has an AIC of 1897.79, an AICc of 1898.22, and a BIC of 1912.67. The ARIMA model 

residuals were subjected to the Ljung-Box test, which returned a test statistic of 8.7364 with 5 degrees of 

freedom and a p-value of 0.1201. 

When the log-transformed pulses production data was analyzed using the seasonal ARIMA model, the 

fitted ARIMA(0,1,0) model yielded a sigma squared value of 0.1639 and a log-likelihood of -6.17. All 

three measures of independence, the AIC, AICc, and BIC, were all 14. A p-value of 0.05846 was found 

when the seasonal ARIMA model's residuals were subjected to a Ljung-Box test. The test statistic was 

3.5805 with 1 degrees of freedom.  

Overall, these analyses show that the selected models adequately captured the temporal patterns in the 

pulses production data, with the ARIMA model showing slightly higher autocorrelation in the residuals 

compared to the seasonal ARIMA model. 
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