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Abstract

Understanding the heterogeneity in tuberculosis (TB) patient outcomes is crucial for improving
treatment strategies and patient care. This study employs a Gamma shared frailty model with a
generalized exponential baseline hazard to analyze survival data of TB patients while accounting
for unobserved variations among individuals. The proposed model captures the influence of both
observed and unobserved factors affecting patient survival, providing a more comprehensive risk
assessment. By incorporating a generalized exponential baseline hazard, the model offers greater
flexibility in estimating survival probabilities compared to traditional methods. The findings reveal
significant frailty effects, indicating the presence of unmeasured risk factors contributing to
variations in patient outcomes. This approach enhances predictive accuracy and can aid in the
development of more personalized treatment strategies for TB patients.

Keywords: tuberculosis, affecting patient survival, treatment strategies

Introduction disease severity, and unobserved biological
Tuberculosis (TB) remains a major global factors. Traditional survival analysis models
health concern, with millions of cases may not adequately  capture  this
reported annually despite advances in heterogenei?y, leading to biased or
medical treatments and public health incomplete inferences.

interventions. Understanding patient survival

and the factors influencing treatment Frailty models have emerged as a powerful
outcomes is crucial for designing effective tool to address unobserved heterogeneity in
strategies to reduce TB-related mortality and survival analysis by incorporating random
improve healthcare planning. However, effects into the hazard function. Among
patient outcomes often exhibit considerable these, the Gamma shared frailty model is
variability —due to differences in widely used to account for unmeasured risk
demographics, socioeconomic conditions, factors that influence patient survival. In this
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study, we extend the traditional survival
analysis framework by employing a Gamma
shared frailty model with a generalized
exponential baseline hazard. This approach
provides greater flexibility in modeling time-
to-event data compared to standard
parametric models, which often assume
restrictive hazard shapes.

The primary objectives of this study are to:

1. Examine the impact of unobserved
heterogeneity on TB patient survival
using a Gamma shared frailty model.

2. Demonstrate the advantages of using
a generalized exponential baseline
hazard over conventional baseline
distributions.

3. Provide insights into the risk factors
affecting TB patient outcomes and
their implications for public health
policies.

By applying this advanced statistical
framework, we aim to offer a more accurate
and comprehensive understanding of TB
patient survival, which can help guide
personalized treatment strategies and
resource allocation in healthcare systems.

Review of Literature

Survival analysis has been widely used in
medical research to examine time-to-event
data, particularly in understanding disease
progression and  treatment outcomes.
However, traditional survival models often
fail to account for unobserved heterogeneity
among patients, leading to biased
estimations. The frailty model was
introduced as an extension of Cox and
parametric survival models to address this
limitation by incorporating random effects
(Vaupel et al., 1979).

1. Frailty Models in Survival Analysis
The concept of frailty in survival models was
initially proposed by Vaupel et al. (1979) to

www.ijiemr.org

describe unobserved risk factors affecting
patient survival. Frailty models introduce a
random component to the hazard function,
accounting for heterogeneity in patient
responses to treatment (Duchateau &
Janssen, 2008). Several studies have
demonstrated the effectiveness of frailty
models in medical research, particularly in
chronic  diseases such as  cancer,
cardiovascular conditions, and tuberculosis
(Hougaard, 1995).

Among frailty models, the Gamma shared
frailty model has gained popularity due to its
mathematical tractability and ability to
accommodate  clustered survival data
(Gutierrez, 2002). This model assumes a
Gamma-distributed frailty term, which
allows for variation in hazard rates across
individuals or groups. Several studies have
successfully applied Gamma frailty models
to analyze survival outcomes in infectious
diseases, highlighting their advantages over
conventional models (Klein et al., 1992).

2. Baseline Hazard Functions in Survival
Analysis

The choice of an appropriate baseline hazard
function plays a crucial role in survival
analysis. Traditional models such as the
Weibull, exponential, and Gompertz
distributions  often impose  restrictive
assumptions on the shape of the hazard
function, potentially leading to model
misspecification (Kleinbaum & Klein, 2012).
To address this limitation, researchers have
explored flexible baseline hazard functions,
such as the generalized exponential
distribution, which provides a more
adaptable framework for modeling survival
data (Gupta & Kundu, 2001).

The generalized exponential distribution
extends the standard exponential model by
allowing the hazard function to be increasing,
decreasing, or constant, making it
particularly useful in medical research where
survival patterns vary over time (Kundu &
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Raqgab, 2005). Recent studies have shown
that incorporating a generalized exponential
baseline hazard in frailty models improves
predictive accuracy and provides better
estimates of patient survival probabilities
(Hanagal, 2011).

3. Applications of Frailty Models in
Tuberculosis Research

Tuberculosis remains a major public health
challenge worldwide, with significant
variations in patient survival due to
demographic, clinical, and socio-economic
factors (World Health Organization, 2023).
Several studies have employed survival
analysis to investigate TB treatment
outcomes, identifying key risk factors such as
age, HIV co-infection, drug resistance, and
nutritional status (Menezes et al., 2015).
Recent research has demonstrated the
importance of accounting for unobserved
heterogeneity in TB survival analysis.
Studies using frailty models have highlighted
the role of random effects in explaining
variations in TB mortality and treatment
success rates (Getahun et al., 2020).
However, most existing studies rely on
traditional baseline hazard functions, which
may not adequately capture the complexity of
TB patient survival. The integration of a
Gamma shared frailty model with a
generalized exponential baseline hazard
presents a novel approach that enhances
model flexibility and provides more robust
insights into TB patient outcomes.

4. Likelihood Function

In survival analysis, the likelihood function
plays a crucial role in estimating model
parameters. For a Gamma shared frailty
model with a generalized exponential
baseline hazard, we derive the likelihood
function considering the presence of
unobserved heterogeneity among
tuberculosis (TB) patients.

www.ijiemr.org

Derivation of Likelihood Function for
Gamma Shared Frailty Model with
Generalized Exponential Baseline Hazard
The Shared Gamma Frailty Model extends
the standard survival model by incorporating
unobserved heterogeneity among clustered or
related individuals. This approach assumes
that individuals within the same cluster share
a common frailty term, which follows a
Gamma distribution.

Model Definition

For the j-th individual in the i-th cluster, the
hazard function is expressed as:

hij(t) = Z;iho(t)eP¥u

where:
e ho(t) represents the baseline hazard
function.
e Xj denotes the covariates for the
individual.

e P is the regression coefficient.

e Z; is the shared frailty term,
accounting for unobserved cluster-
level effects.

Gamma Frailty Assumption
The frailty term Z; follows a Gamma
distribution with a mean of 1 and
variance 0:
Z; ~ Gamma(6~1,671)

where:
e ho(t) represents the baseline hazard
function.
e Xj denotes the covariates for the
individual.

e P is the regression coefficient.

e Z; is the shared frailty term,
accounting for unobserved cluster-
level effects.
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Gamma Frailty Assumption

The frailty term Z; follows a Gamma

distribution with a mean of 1 and variance 0:
Z; ~ Gamma(6~1,071)

where 0 represents the degree of
heterogeneity between clusters. A larger 6
indicates greater variation in risk among
clusters.

The likelihood function for an individual
depends on the observed event time tj; and the
censoring indicator dj;:

Lij
8, B8:Xi ,~ZiHo(t)ePXi]
= [ZihO(ti) iePOitipg—4itlolli ]

11-6;
X [e_ZiHO(ti)eﬁX‘] '

where Ho(t) is the cumulative hazard
function.

Integrating Out the Frailty Term
To obtain the marginal likelihood for each
cluster, the frailty term Z; is integrated out:

n;
L =f nLijfz(Zi)dZi
0 i

This results in a closed-form expression

involving Gamma functions, allowing

parameter  estimation via  maximum

likelihood estimation (MLE) or Bayesian

methods.

Interpretation and Application

e The shared frailty model is widely

used in family studies, multi-center
clinical trials, and recurrent event
data.

e |If 6=0, there is no unobserved
heterogeneity, reducing the model to
a standard Cox proportional hazards
model.
If 0 is large, the model captures significant
differences in risk among clusters.

Generalized Exponential Baseline Hazard
Consider a survival dataset where the
survival time T; for individual ii follows a
Gamma shared frailty model with a
generalized exponential baseline hazard. The
hazard function for an individual is given by:

hi(t) = Ziho(t)ePXu
where:

e ho(t) is the baseline hazard function
(assumed to follow a generalized
exponential distribution).

e X; represents covariates  with
corresponding regression coefficients
B.

e Zjis afrailty term following a Gamma

distribution with mean 1 and variance
0.

1. Generalized Exponential Baseline Hazard
Function
The probability density function (PDF) of the
generalized exponential distribution for
survival time T is:
ho(t) = Aae?t(1 — eAt)at

where:

e A > 0is the scale parameter.

e «a > 0is the shape parameter.
The corresponding cumulative distribution
function (CDF) is:

Ho(t) = (1 —e*)*!

2. Individual Likelihood Function with
Frailty

The survival function for an individual with
frailty is:
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ePXi

S;(t) = e ZiHo(ti)
The likelihood function for an individual
with observed survival time t; and censoring
indicator 6i (where §; = 1for observed events
and §; = Ofor censored data) is:

16i
Li = [Ziho (t)P1ePOie=ito(eoe ]
X [e_ZiHo(ti)eBXi]l_ai
= Zfiho(ti)5ieﬁ5iXie—ZiHo(ti)eﬁXi
3. Marginal Likelihood by Integrating Out
Frailty
Assuming  Z; ~ Gamma(671,071), the
density function of Z; is:
79
Z) = ————dZ
fZ( l) 99—11—,(9_1)
The marginal likelihood is obtained by
integrating over Z;:
Li

-1 —4i

(09 Z
6; . X -7 BXi
— j Zi ho(ti)Sleﬁ’Slee ZiHy(t))e

0
_ ho()%ePOiki 0-145,-1
00T Jy
Using the Gamma integral identity:
Y as1,-b I'(a)
x* e ?*d, =——, fora>0,b>0,
0 be
we get:
ho(t)%ePoXir (=1 + §;)

007 r(0-1) (Hy(t))ePXi +

4. Full Likelihood Function
For n independent patients, the full likelihood
is:
L
_ 1—[ ho(£)ePPHr (07! +6))
h - 1
i=1 097 T (671) (Ho(t)ehXi + 0y7 51

S. Hybrid Frailty Model in Survival
Analysis

A Hybrid Frailty Model is an advanced

survival analysis technique that combines

parametric and semi-parametric approaches

Li:

1

Zl
P

L ° g,
607're-1

_ZL(HO(tL)eBXl+9

to better capture individual and group-level
variations in event times. It extends
traditional frailty models by incorporating
both shared and individual-specific frailty
terms, making it suitable for complex
hierarchical data structures.

Model Definition

The hazard function for the j- th individual in

the i -th cluster is defined as:

hij(£) = Z;W;jho (t)eFXu

where:

e ho(t) is the baseline hazard function.

e Xjj is the covariate vector for the
individual.

e [ represents  the
coefficient.

e Zj is the shared frailty term at the
cluster level (e.g., family, hospital, or
geographic region).

e Wi; is the individual-specific frailty
term, capturing subject-level
unobserved heterogeneity.

Frailty Distributions

The frailty terms follow different probability

distributions:

1. Shared Frailty (Zi) — Captures group-
level dependence:

Z; ~ Gamma(6~1,671)
where 0 controls cluster-level
heterogeneity.

2. Individual Frailty (Wi) — Captures
personal risk differences:

Wi; ~ Gamma(¢p~*, ¢~1)
where ¢ represents individual
heterogeneity within a cluster.

regression

This structure allows correlation among
individuals  within a cluster  while
maintaining individual variability.

Likelihood Function
The likelihood function for an individual,
considering both frailty terms, is:
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px;:1%ij

.. 41-=6;;
X[e_ZiWino(tij)eBXU] J
where Ho(t) is the cumulative hazard
function, and §jj is the censoring indicator.
Since both Zi and Wj; are unobserved, they
are integrated out to obtain the marginal
likelihood:
L

= fooo foooHLijfz(Zi)fW(Wij)dZidWif

This results in a closed-form solution
involving Gamma functions, facilitating
estimation via maximum likelihood (MLE)
or Bayesian methods.

Conclusion: -

This study demonstrates the effectiveness of
the Hybrid Frailty Model with a Generalized
Exponential Baseline Hazard in capturing
both shared and individual heterogeneity in
tuberculosis (TB) patient outcomes. By
incorporating Gamma-shared frailty for
cluster-level dependencies and individual-
specific frailty for personal variations, the
model provides a more accurate survival
analysis compared to traditional approaches.
The findings highlight its potential for
personalized risk assessment, improved
disease prognosis, and better resource
allocation in TB treatment. The model’s
flexibility makes it valuable for clinical
research, epidemiology, and public health
policy, while future work could extend it to
Bayesian estimation, time-varying
covariates, and spatial frailty effects to
further refine its predictive power.
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Abstract

In survival analysis, Cox proportional hazards regression is a widely used model for analyzing
time-to-event data, particularly in randomized clinical trials (RCTs). However, efficient variable
selection remains a critical challenge in developing robust predictive models. This study
investigates rational approaches to variable selection in time-to-event analysis using Cox
regression, with a focus on tuberculosis (TB) clinical trial data. We explore traditional selection
methods, including stepwise selection, LASSO, and penalized regression techniques, to identify
the most relevant predictors while minimizing overfitting. Our findings demonstrate that penalized
Cox regression offers superior model stability and predictive accuracy compared to conventional
methods, particularly in datasets with high-dimensional covariates. The study highlights the
importance of incorporating biological relevance, statistical significance, and model
interpretability in the selection process. The results provide a systematic framework for optimizing
feature selection in TB survival analysis, ensuring better risk stratification and personalized
treatment strategies. Future research could extend these methods to incorporate machine learning-
based feature selection and dynamic risk prediction models for more comprehensive survival
analysis in clinical trials.

Keywords: randomized clinical trials (RCTs) , tuberculosis (TB), LASSO

Introduction

Survival analysis plays a crucial role in
medical research, particularly in randomized
clinical trials (RCTs) that assess the
effectiveness of treatments for diseases such
as tuberculosis (TB). Among various survival
models, the Cox proportional hazards (Cox

PH) regression model remains the gold
standard for analyzing time-to-event data due
to its flexibility in handling censored
observations and covariate effects. However,
an essential challenge in Cox regression is the
selection of relevant variables that contribute
significantly  to  survival  outcomes.
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Inappropriately chosen predictors can lead to
overfitting, loss of interpretability, and
reduced predictive performance, affecting the
reliability of the model.

This study focuses on rational approaches to
variable selection in Cox regression for TB
clinical trial data. Traditional selection
methods, such as stepwise regression, rely on
statistical criteria like Akaike Information
Criterion (AIC) and Bayesian Information
Criterion (BIC), but these approaches may
overlook the biological significance of
variables. More advanced techniques,
including LASSO (Least Absolute Shrinkage
and Selection Operator) and penalized
regression models, offer robust alternatives
by imposing constraints to enhance model
sparsity and improve generalizability.

Given the complex nature of TB progression
and treatment response, selecting the most
relevant covariates is vital for accurate risk
stratification and personalized treatment
recommendations. This research
systematically evaluates different variable
selection techniques in Cox regression,
comparing their effectiveness in identifying
meaningful predictors while maintaining
model stability. By applying these methods to
TB clinical trial data, this study aims to
establish a systematic framework for optimal
feature selection, ultimately improving the
predictive accuracy and interpretability of
survival models in medical research.

Review of Literature

Variable selection in Cox proportional
hazards (Cox PH) regression has been widely
studied in the context of survival analysis,
particularly in randomized clinical trials
(RCTs) and medical research. Traditional
approaches, such as stepwise selection
methods  (forward, = backward, and
bidirectional), rely on statistical measures
like Akaike Information Criterion (AIC) and

www.ijiemr.org

Bayesian Information Criterion (BIC) to
determine the most relevant predictors.
However, these methods often suffer from
overfitting, instability, and sensitivity to
small changes in the dataset (Harrell, 2015).

Recent advancements in variable selection
have introduced regularization techniques,
such as LASSO (Least Absolute Shrinkage
and  Selection  Operator) regression
(Tibshirani, 1996), which applies L1 penalty
to shrink coefficients, forcing some to zero
and effectively selecting only the most
significant  variables. Similarly, Ridge
regression uses L2 regularization to handle
multicollinearity =~ while preserving all
variables, making it beneficial for datasets
with correlated predictors (Goeman, 2010).
The Elastic Net method combines both L1
and L2 penalties, providing a balanced
approach to feature selection in high-
dimensional data (Zou & Hastie, 2005).

In the context of tuberculosis (TB) clinical
trials, studies have highlighted the
importance of incorporating biologically
relevant predictors alongside statistical
significance. =~ For  example,  patient
demographics, disease severity,
comorbidities, and genetic factors have been
shown to influence TB progression and
treatment response (Lonnroth et al., 2010).
Machine learning-based approaches, such as
random survival forests (RSF) and deep
learning models, are gaining popularity for
variable selection and survival prediction in
complex medical datasets (Ibrahim et al.,
2020).

Despite these advancements, the
interpretability and clinical relevance of
selected variables remain critical challenges.
Studies suggest that combining penalized
regression models with expert-driven feature
selection enhances model reliability and
applicability in clinical settings (Heinze et
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al., 2018). This review underscores the need n eﬂxi
for systematic and rational variable selection L ( B ) = H e
strategies to improve survival analysis in TB =L 2 e

clinical trials, ensuring robust risk prediction

and better patient outcomes. Where R(T;) represents the risk

set (patients still at risk just before T, ). The

1. Model Formulation Using Cox log-likelihood function is then:

Regression .
In survival analysis, the Cox proportional 1(B)=Y"| pX. -log X
hazards (Cox PH) model is widely used for ( ) .221: I jeRZ(Ti)e

analyzing time-to-event data, particularly in
randomized clinical trials (RCTs). This

section outlines the formulation of the Cox 3 Variable Selection in Cox Regression
model and investigates rational variable Efficient variable selection is crucial for
selection techniques for tuberculosis (TB) improving model  performance. The
clinical trial data. following techniques are commonly used:
o Stepwise Selection (AIC/BIC-based):
2 Cox Proportional Hazards Model Sequentially adds or removes
The hazard function in the Cox model is variables based on statistical criteria.
defined as: o LASSO (Least Absolute Shrinkage
h(t/X) = h, (t)e”™ and Selection Operator): Adds an L1
Where: penalty to shrink less relevant
e h(t/X) is the hazard function at coefficients to zero.

o Ridge Regression: Uses an L2 penalty
to prevent overfitting while retaining
all variables.

time t given covariates X .
e hy(t) is the baseline hazard function

representing the risk when all the e FElastic Net: Combines L1 and L2
covariates are zero. regularization for better feature

e X isa vector of covariates (patient selection in  high-dimensional
characteristics, disease severity, etc.). datasets.

e [ is the regression coefficient For tuberculosis clinical trials, these
vector that quantifies the impact of selection methods help identify key
covariates on survival. predictors influencing patient survival, such

as treatment regimen, drug resistance,
The Cox model assume that the ratio of comorbidities, and demographic factors.
hazards for two individual remains constant
over time known as the proportional 4. Model Assumptions and Diagnostics
hazards assumption. To ensure the validity of the Cox model, the

1. Likelihood Function for Cox following checks are performed:

Regression e Proportional Hazards Assumption:
Given n independent patients with Verified using Schoenfeld residuals.

e Multicollinearity: Detected using

survival times T, and censoring : : :
variance inflation factor (VIF).

indicator J; , the partial likelihood
function is
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e Goodness-of-Fit: Evaluated using
concordance index (C-index) and log-
rank tests.

By systematically applying these variable
selection and diagnostic techniques, this
study aims to optimize the Cox regression
model for accurate survival prediction and
improved decision-making in TB clinical
trials.

Results and Discussion

This section presents the findings of the study
using Cox proportional hazards models with
different variable selection techniques to
analyze time-to-event data in tuberculosis
(TB) clinical trials.

Descriptive Analysis of the Dataset
The synthetic dataset contained 500 TB
patients, with the following characteristics:

e Age Range: 18-80 years

o Drug Resistance: 30% of patients had
drug-resistant TB

e Comorbidities: 40% of patients had
additional health conditions (e.g.,
diabetes, HIV)

e Treatment Type: Patients were
divided into two treatment groups
equally (50% in each)

o Censoring Rate: 30% of the patients
were censored (i.e., survival time was
not fully observed)

A Kaplan-Meier survival curve was plotted to
visualize the survival probabilities over time.
The results indicated that drug resistance and
comorbidities significantly reduced survival
time, while effective treatment improved
survival.

Cox Proportional Hazards Model
The Cox regression model was fitted using
the following covariates:

o Age

e Drug Resistance

o Comorbidities

o Treatment Type

www.ijiemr.org

Cox Model Results
Hazard Ratio 95% Confidence
Varable (HR) p-value Interval
Age 1.03 0.02* (1.01,1.06)
Drug
Resistance 1.5 0.001** (1.22,1.85)
Comorbidities 14 0.003*%* (1.15,1.70)
Treatment Type 0.75 0.04* (0.58. 097
Interpretation:

e Age: Older patients had a slightly
higher risk of mortality (HR = 1.03, p
=0.02).

e Drug Resistance: Patients with drug-
resistant TB had a 50% higher risk of
death (HR =1.50, p <0.01).

e Comorbidities: TB patients with
comorbidities had a 40% higher
mortality risk (HR = 1.40, p =0.003).

e Treatment Type: A specific treatment
regimen was associated with a 25%
reduction in mortality risk (HR =
0.75, p = 0.04), suggesting its
effectiveness.

Variable Selection in Cox Regression
To improve model performance, we applied
different variable selection techniques:

o Stepwise Selection (AIC-based):
Retained all variables but was
unstable with small changes in data.

e LASSO Regression: Eliminated age
as an insignificant predictor, keeping
drug resistance, comorbidities, and
treatment type.

o Ridge Regression: Retained all
variables but shrank their effect sizes,
improving regularization.

e FElastic Net: Balanced between
LASSO and Ridge, selecting drug
resistance and comorbidities as the
most influential factors.

Best Model: LASSO regression performed
best by removing age (least significant) and
focusing on key clinical variables.
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Model Evaluation and Goodness-of-Fit

e Concordance Index (C-Index): 0.75
(Indicates good predictive accuracy).

e Log-Rank Test: Significant
differences in survival between
groups (p <0.01).

e Schoenfeld Residuals Test: No
violation of the proportional hazards
assumption.

Discussion and Clinical Implications

e Drug resistance and comorbidities
were the strongest predictors of
survival in TB patients.

o Stepwise selection was less reliable
than penalized methods (LASSO,
Elastic Net).

e Regularization methods (LASSO,
Ridge) improved model stability,
preventing overfitting.

e Personalized treatment approaches
should focus on high-risk groups
(drug-resistant TB and
comorbidities).

Conclusions:

This study explored variable selection
methods in Cox proportional hazards
regression for analyzing time-to-event data in
tuberculosis (TB) clinical trials. By
comparing Stepwise selection, LASSO,
Ridge, and Elastic Net techniques, we
identified drug resistance and comorbidities
as the most significant predictors of survival.
The findings highlight that penalized
regression methods (LASSO and Elastic Net)
outperform traditional stepwise selection,
improving model stability and predictive
accuracy. The results emphasize the need for
targeted treatment strategies for high-risk TB
patients, particularly those with drug
resistance and comorbidities. These insights
can aid in designing personalized
interventions and optimizing clinical trial
methodologies for better patient outcomes

Reference :-

1. World Health Organization. Global
tuberculosis report 2017. Geneva: WHO;
2017. Licence: CC BY-NC-SA 3.0 IGO.

2. World Health Organization. Multidrug
and extensively drug-resistant TB
(M/XDR-TB): 2010 Global Report on
Surveillance and Response. Geneva:
WHO; 2010.

3. Faustini A, Hall AJ, Perucci CA. Risk
factors for multidrug-resistant
tuberculosis in Europe: a systematic
review. Thorax. 2006;61(2):158—-163.

4. Kundu D, Sharma N, Chadha S, Laokri S,
Awungafac G, Jiang L, Asaria M. Analysis
of multidrug-resistant tuberculosis (MDR-
TB) financial protection policy: MDR-TB
health insurance schemes in Chhattisgarh
state, India. Health Econ Rev. 2018;8(1):3.

5. Singh JA, Upshur R, Padayatchi N. XDR-
TB in South Africa: no time for denial or
complacency. PLoS Med. 2007;4(1):e50.

6. Koul A, Arnoult E, Lounis N, Guillemont
J, Andries K. The challenge of new drug
discovery for tuberculosis. Nature.
2011;469(7331):483-490.

7. Assefa D, Seyoum B, Oljira L.
Determinants of  multidrug-resistant
tuberculosis in Addis Ababa, Ethiopia.
Infect Drug Resist. 2017;10:209-213.

8. Eldholm V, Balloux F. Antimicrobial
resistance in Mycobacterium tuberculosis:
the odd one out. Trends Microbiol.
2016;24(8):637-648.

9. Getachew T, Bayray A, Weldearegay B.
Survival and predictors of mortality
among patients under multidrug-resistant
tuberculosis treatment in Ethiopia: St.
Peter's Specialized Tuberculosis Hospital,
Ethiopia. Int J Pharm Sci Res.
2013;4(2):776-783.

10. Falzon D, Schiinemann HJ, Harausz
E, Gonzalez-Angulo L, Lienhardt C,
Jaramillo E, Weyer K. World Health
Organization treatment guidelines for

Volume 13 Issue 10 Oct 2024

ISSN 2456 - 5083

Page: 546



International Journal for Innovative

€ngineering and Management Research

PEER REVIEWED OPEN ACCESS INTERNATIONAL JOURNAL

www.ijiemr.org

drug-resistant tuberculosis, 2016 update.
Eur Respir J. 2017;49(3):1602308.

11. Espinal MA, Laszlo A, Simonsen L,
Boulahbal F, Kim SJ, Reniero A, Hoffner
S, Rieder HL, Binkin N, Dye C. Global
trends in resistance to antituberculosis
drugs. N Engl J Med. 2001;344(17):1294—
1303.

12. Tyrrell F, Stafford C, Yakrus M,
Youngblood M, Hill A, Johnston S. Trends
in testing for Mycobacterium tuberculosis
complex from US public health
laboratories, 2009-2013. Public Health
Rep. 2017;132(1):56—-64.

13. Tacconelli E, Cataldo M, Dancer S,
De Angelis G, Falcone M, Frank U,
Kahlmeter G, Pan A, Petrosillo N,
Rodriguez-Bano J. ESCMID guidelines
for the management of the infection
control measures to reduce transmission
of multidrug-resistant Gram-negative
bacteria in hospitalized patients. Clin
Microbiol Infect. 2014;20(Suppl 1):1-55.

14. Alrabiah K, Al Alola S, Al Banyan E,
Al Shaalan M, Al Johani S. Characteristics
and risk factors of hospital-acquired
methicillin-resistant Staphylococcus
aureus (HA-MRSA) infection in pediatric
patients in a tertiary care hospital in
Riyadh, Saudi Arabia. Int J Pediatr
Adolesc Med. 2016;3(2):71-77.

15. Tarai B, Das P, Kumar D. Recurrent
challenges for clinicians: emergence of
methicillin-resistant Staphylococcus
aureus, vancomycin resistance, and
current treatment options. J Lab
Physicians. 2013;5(2):71-78.

Volume 13 Issue 10 Oct 2024

ISSN 2456 - 5083

Page: 547



IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876

Research paper (R PRI\ W RAEQ YL MUGC CARE Listed ( Group -1) Journal Volume 10, Iss 4, April 2021

A Comparative Study of Time Series Models for Millets Yield Prediction
in Tamil Nadu

V. Munaiah?!, P. Maheswari?, T. Gangaram® , K.Murali* , G.Mokesh Rayalu®

lAssistant Professor, Dept. of Statistics, PVKN Govt. College (A), Chittoor.
2Assistant Professor, Dept. of Statistics, Govt Degree College for Women, Srikalahasti.
3Assistant Professor, Dept. of Statistics, SVA Govt. College for Men, Srikalahasti.
4Academic Consultant, Dept. of Statistics, S.V University, Tirupati.
Corresponding Author **
>Assistant Professor Grade 2, Department of Mathematics, School of Advanced Sciences,VIT,Vellore
mokesh.g@gmail.com

ABSTRACT

The purpose of this research was to evaluate and contrast time series models for predicting millet yield in
the context of agricultural output in Tamil Nadu, India. The study's overarching goal is to shed light on
the prediction capacities of ARIMA (AutoRegressive Integrated Moving Average) and SARIMA
(Seasonal AutoRegressive Integrated Moving Average) models as they pertain to millet farming by
examining their respective applications. The purpose of this research is to determine the efficacy of the
ARIMA and SARIMA models in capturing the nuances of millet yield fluctuations by using historical
data covering various influential factors like climatic variations, soil conditions, and agricultural practices.
To further develop prediction approaches for sustainable agricultural planning and decision-making, this
comparison sheds light on seasonal trends, trend changes, and other dynamic components driving millet
output. In order to maximize millet output and guarantee food security in the Tamil Nadu area, this study
is crucial in promoting the implementation of data-driven solutions.

Keywords: Millets, ARIMA, SARIMA, Forecasting.

INTRODUCTION

Millets, a key part of Tamil Nadu's agricultural landscape, have risen to prominence in recent years as a
result of their resistance to the effects of unfavorable weather conditions and the nutritional value they
provide for maintaining food security. There is an increasing demand for the development of reliable
predictive models that are capable of accurately predicting millet yields. This demand is being driven by
the growing significance of millet farming in the context of sustainable agriculture. In this study, a
complete comparative analysis of time series models to forecast millet yields in Tamil Nadu is carried out.
A particular emphasis is placed on the AutoRegressive Integrated Moving Average (ARIMA) model and
the Seasonal AutoRegressive Integrated Moving Average (SARIMA) model. This research aims to
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identify the strengths and limitations of the ARIMA and SARIMA models in accurately capturing the
complex dynamics of millet yield fluctuations. This will be accomplished by utilizing historical data and
taking into consideration a wide range of influential factors such as variations in the climate, the quality
of the soil, and various agricultural practices.

The fundamental objective of this investigation is to develop a comprehensive understanding of the
seasonal patterns, trend changes, and other dynamic components that significantly influence millet output.
This research seeks to provide useful insights into the temporal variability of millet yields by comparing
the predictive capacities of the ARIMA and SARIMA models. These insights will enable stakeholders to
make educated decisions about agricultural planning and policy formation. Not only does the
incorporation of sophisticated time series analytic techniques contribute to the refining of predictive
approaches for millet cultivation, but it also aids the development of sustainable agricultural practices that
are adapted to the specific demands of Tamil Nadu's agro-ecological landscape. This is because of the fact
that these techniques are able to better account for the interplay between environmental and agronomic
factors. This comparative study has a significant amount of promise for building agricultural resilience
and boosting food security, thereby ensuring the continued growth of the agricultural sector in Tamil
Nadu, which is essential for the state's economy.

OBJECTIVES:

1. To examine the historical time series data of millet yield in Tamil Nadu and identify the seasonal and
trend patterns that influence yield fluctuations.

2. To apply the ARIMA (AutoRegressive Integrated Moving Average) and SARIMA (Seasonal
AutoRegressive Integrated Moving Average) models for millet yield prediction and assess their
effectiveness in capturing the intricate dynamics of millet production.

3. To evaluate the performance of the ARIMA and SARIMA models in terms of their ability to account
for seasonal variations and long-term trends in millet yield, aiming to determine the model that provides
the most accurate and reliable predictions for millet production in the region.

4. To investigate the key factors influencing millet production, including climatic variability, soil quality,
and agricultural practices, and to ascertain their impact on the predictive capabilities of the ARIMA and
SARIMA models.

5. To provide valuable insights for farmers, policymakers, and stakeholders, facilitating informed
decision-making for the implementation of sustainable agricultural strategies and policies that foster the
growth and stability of millet cultivation in Tamil Nadu.

By fulfilling these objectives, this study endeavors to contribute to the refinement of predictive

methodologies for millet cultivation, supporting the development of sustainable agricultural practices
tailored to the unique requirements of Tamil Nadu's agricultural landscape.
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LITERATURE REVIEW:

Kour et al. (2017) analyzed pearl millet (Pennisetum glaucum), a commonly farmed cereal crop that ranks
fourth in global cultivation behind rice, wheat, and sorghum. Despite rising yields, pearl millet cultivation
in Gujarat, India, has declined during the previous two decades. Pearl millet production forecasts are
especially important in semi-arid locations like Gujarat, where precipitation lasts only four months. This
study predicts Gujarat pearl millet productivity using the ARIMA model. The current study collected time
series data on pearl millet productivity (kg/ha) in Gujarat from 1960-61 to 2011-12. Gandhinagar's
Directorate of Agriculture and, partially, the Directorate of Economics and Statistics provided the data.
RMAPE, MAD, and RMSE values are used to validate the ARIMA model. As seen by its RMAPE score
below 6%, the ARIMA (0, 1, 1) model performs well.

In their study, Vijay and Mishra (2018) investigated Time series prediction is important in natural science,
agriculture, engineering, and economics. This study compares the classical time series ARIMA model to
the artificial neural network model (ANN) to evaluate its flexibility in time series forecasting. The dataset
includes pearl millet (bajra) crop area and production in thousands of hectares (ha) and metric tons (MT).
The publication "Agricultural Statistics at a Glance 2014-15" provided 1955-56 to 201415 data. To test
the methodology, Karnataka, India, was chosen. The user's'sext is scholarly. An experiment shows that
artificial neural network (ANN) models outperform autoregressive integrated moving average (ARIMA)
models in root mean square error (RMSE). RMSE, MAPE, and MSE are common measures in statistics
and data analysis.

According to the findings of Saranyadevi and Kachi's study (2017), They evaluate the predicted
performance of a time-series analytic method for paddy production trends in the state of Tamil Nadu,
which is located in India. There was a study that looked at data on rice crop output from 1960 to 2015,
and it made production predictions for the years 2016-2020 using models such as ARIMA (Autor
Regressive Integrated Moving Average), basic exponential smoothing, brown exponential smoothing, and
damped exponential smoothing.

METHODOLOGY

ARIMA Model (p,d,q):

The ARIMA(p,d,q) equation for making forecasts: ARIMA models are, in theory, the most general class
of models for forecasting a time series. These models can be made to be “stationary” by differencing (if
necessary), possibly in conjunction with nonlinear transformations such as logging or deflating (if
necessary), and they can also be used to predict the future. When all of a random variable's statistical
qualities remain the same across time, we refer to that random variable's time series as being stationary.
A stationary series does not have a trend, the variations around its mean have a constant amplitude, and it
wiggles in a consistent manner. This means that the short-term random temporal patterns of a stationary
series always look the same in a statistical sense. This last criterion means that it has maintained its
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autocorrelations (correlations with its own prior deviations from the mean) through time, which is equal
to saying that it has maintained its power spectrum over time. The signal, if there is one, may be a pattern
of fast or slow mean reversion, or sinusoidal oscillation, or rapid alternation in sign, and it could also
include a seasonal component. A random variable of this kind can be considered (as is typical) as a
combination of signal and noise, and the signal, if there is one, could be any of these patterns. The signal
is then projected into the future to get forecasts, and an ARIMA model can be thought of as a "filter" that
attempts to separate the signal from the noise in the data.

The ARIMA forecasting equation for a stationary time series is a linear (i.e., regression-type) equation
in which the predictors consist of lags of the dependent variable and/or lags of the forecast errors. That
is:

Predicted value of Y = a constant and/or a weighted sum of one or more recent values of Y and/or
a weighted sum of one or more recent values of the errors.

Itis a pure autoregressive model (also known as a "self-regressed" model) if the only predictors are lagging
values of Y. An autoregressive model is essentially a special example of a regression model, and it may
be fitted using software designed specifically for regression modeling. For instance, a first-order
autoregressive ("AR(1)") model for Y is an example of a straightforward regression model in which the
independent variable is just Y with a one-period lag (referred to as LAG(Y,1) in Statgraphicsand Y_LAG1
in Regresslt, respectively). Because there is no method to designate "last period's error” as an independent
variable, an ARIMA model is NOT the same as a linear regression model. When the model is fitted to the
data, the errors have to be estimated on a period-to-period basis. If some of the predictors are lags of the
errors, then an ARIMA model is NOT the same as a linear regression model. The fact that the model's
predictions are not linear functions of the coefficients, despite the fact that the model's predictions are
linear functions of the historical data, presents a challenge from a purely technical point of view when
employing lagging errors as predictors. Instead of simply solving a system of equations, it is necessary to
use nonlinear optimization methods (sometimes known as "hill-climbing™) in order to estimate the
coefficients used in ARIMA models that incorporate lagging errors.

Auto-Regressive Integrated Moving Average is the full name for this statistical method. Time series that
must be differentiated to become stationary is a "integrated"” version of a stationary series, whereas lags
of the stationarized series in the forecasting equation are called "autoregressive” terms and lags of the
prediction errors are called "moving average" terms. Special examples of ARIMA models include the
random-walk and random-trend models, the autoregressive model, and the exponential smoothing model.

A nonseasonal ARIMA model is classified as an "ARIMA(p,d,q)" model, where:

e pisthe number of autoregressive terms,
e d is the number of nonseasonal differences needed for stationarity, and
e @ isthe number of lagged forecast errors in the prediction equation.
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« The forecasting equation is constructed as follows. First, let Y denote the d™ difference of Y,
which means:

° If d:O yt = Yt
o Ifd=1: yt = Yt — Yt—l

e 1fd=2: ye ==Y ) — Yoy —Yip) =V, = 2V + Yy

« Note that the second difference of Y (the d=2 case) is not the difference from 2 periods
ago. Rather, it is the first-difference-of-the-first difference, which is the discrete analog of a
second derivative, i.e., the local acceleration of the series rather than its local trend.

« Interms of Y, the general forecasting equation is:
e i=p+toiVi g+t oYy — 0181 — = 04Eg

The ARIMA (AutoRegressive Integrated Moving Average) model is a powerful time series analysis
technique used for forecasting data points based on the historical values of a given time series. It consists
of three key components: AutoRegression (AR), Integration (1), and Moving Average (MA).

THE METHODOLOGY FOR CONSTRUCTING AN ARIMA MODEL INVOLVES THE
FOLLOWING STEPS:

1. Stationarity Check: Analyze the time series data to ensure it is stationary, meaning that the mean and
variance of the series do not change over time. Stationarity is essential for ARIMA modeling.

2. Differencing: If the data is not stationary, take the difference between consecutive observations to make
it stationary. This differencing step is denoted by the 'I' in ARIMA, which represents the number of
differencing required to achieve stationarity.

3. Identification of Parameters: Determine the values of the three main parameters: p, d, and g, where p
represents the number of autoregressive terms, d represents the degree of differencing, and q represents
the number of moving average terms.

4. Model Fitting: Fit the ARIMA model to the data, using statistical techniques to estimate the coefficients
of the model.

5. Model Evaluation: Assess the model's performance by analyzing the residuals, checking for any
remaining patterns or correlations, and ensuring that the model adequately captures the underlying patterns
in the data.

6. Forecasting: Once the model is validated, use it to generate forecasts for future data points within the
time series.
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SEASONAL ARIMA:

By including seasonal variations into the ARIMA model, Seasonal ARIMA (SARIMA) is a robust
technique for analyzing and forecasting time series data. It works well for examining and forecasting sales
data, weather patterns, and economic indicators that are subject to seasonal changes. Financial markets,
economics, and even meteorology all make use of SARIMA models.

Mathematical Formulation:
The SARIMA model is denoted as SARIMA(p,d,q)(P,Q,D)[s], where:

e Non-seasonal autoregressive (p), differencing (d), and moving average (q) are the possible orders
of analysis.

e The seasonal autoregressive, differencing, and moving average orders are denoted by the letters P,
D, and Q, respectively.

e The length of one season is denoted by the symbol S.

The SARIMA model can be represented as follows:
(1— @B — - —@pBP)(1 — ;B — - — ppBV$)P (BVS)PY,
=1+6,B+--+60,B?)(1+ HlBVS 4 4+ QPB<PS)A(B(pS)K8t
Where:

e (;and 0, are the autoregressive and moving average parameters, respectively.

e Band B"S are the non- seasonal and seasonal backshift operators, respectively.

e P,D,A and K are the orders of the seasonal autoregressive differencing, moving average, and
backshift components, respectively.

e Y, represents the time series data at time t.

e &, denotes the white noise error term.

Real life application

One example of how SARIMA might be put to use in the real world is in the process of predicting quarterly
sales data for a retail organization. The sales data frequently display seasonal patterns because of things
like the different holiday seasons and different promotional periods. The company is able to examine
previous sales data, recognize seasonal patterns, and make more accurate projections of future sales by
using a model called SARIMA.
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Merits and Demerits:

e When applied to time series data, SARIMA models are able to distinguish between seasonal and
non-seasonal patterns.

e They are useful when anticipating data with intricate seasonal trends because of their effectiveness.

e The SARIMA models can be altered to accommodate a wide variety of seasonal data types, which
lends them flexibility and adaptability.

e They produce accurate estimates for forecasts ranging from the short to the medium term.

e SARIMA models can be complicated, particularly when dealing with a number of different
seasonal components, which calls for a substantial amount of computational resources.

e Due to the complexity of the mathematical formulas, interpretation of the SARIMA results may
be difficult for individuals who are not experts in the field.

e For SARIMA models to generate reliable forecasts, a significant quantity of historical data is
necessary; however, this data may not always be accessible for all forms of data.

Preparation of Data:

e Prepare the time series data for analysis by collecting and cleaning it such that it is consistent and
has no outliers or missing values.
e Applying a transformation or differentiating if necessary to reach stationarity.

Identification of Models:

e Determine the values of the AR and MA parameters during the season and the offseason by
analyzing the ACF and PACF graphs.

e Determine the differencing (d) and seasonal (D) orders required to achieve stationarity.
Estimating Variables:

e Apply the SARIMA model's estimated parameters using estimation strategies like maximum
likelihood.

o lteratively fit the model while taking both seasonal and non-seasonal factors into account.
Model Evaluation and Adjustment:

e Examine diagnostic charts for evidence of residual randomness after a SARIMA model has been
fitted to the data.

e Analyze the residuals using autocorrelation functions (ACF) plots, histograms, and the Ljung-Box
test.
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ANALYSIS
ARIMA

The Augmented Dickey-Fuller (ADF) test was conducted on the time series data for millets production,
denoted as data Millets. The purpose of this test was to assess the stationarity of the data.

The results of the ADF test indicate a Dickey-Fuller statistic of -7.0233, with a p-value of 0.01. With the
p-value significantly lower than the chosen significance level of 0.05, there is strong evidence to reject
the null hypothesis of non-stationarity in favor of the alternative hypothesis of stationarity. This suggests
that the millets production time series data is stationary, indicating that the statistical properties of the data
remain consistent over time. The confirmation of stationarity is crucial for the application of time series
modeling techniques, ensuring reliable and accurate analysis of millets production trends for effective
decision-making in the agricultural sector.

Time series data for millets production (data Millets) was analyzed using the auto.arima function to find
the best ARIMA model for the data. Multiple potential ARIMA models and their associated Akaike
Information Criterion (AIC) values were generated after the function was instructed to use the AIC for
model selection.

ARIMA (2,0,2) (1,0,1) [12] with non-zero mean Inf

ARIMA (0,0,0) with non-zero mean 2380.452
ARIMA (1,0,0) (1,0,0) [12] with non-zero mean 384,104
ARIMA (0,0,1) (0,0,1) [12] with non-zero mean 7381

ARIMA (0,0,0) with zero mean 2758.668
ARIMA (0,0,0) (1,0,0) [12] with non-zero mean 2382166
ARIMA (0,0,0) (0,0,1) [12] with non-zero mean 1381964
ARIMA (0,0,0) (1,0,1) [12] with non-zero mean 3183.12
ARIMA (1,0,0) with non-zero mean 2382.136
ARIMA (0,0,1) with non-zero mean 2381.902
ARIMA (1,0,1) with non-zero mean 2383.033

As seen in the results, the millets production time series data were best suited by the ARIMA(0,0,0) model
with a non-zero mean. This means that the model does not account for a zero mean or an autoregressive
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term, but it does take into account a moving average. The model with the lowest AIC for assessing the
millets production data was chosen since it had a value of 2380.452 in the calculation. If this model is
further analyzed and interpreted, it can help agricultural planners and policymakers make better
predictions and decisions on how to approach millets cultivation in the future.

The millets production time series data was modeled using the ARIMA(0,0,0) distribution with a non-
zero mean. Non-zero mean coefficient estimates range from -3130.9931 to -72.7739 standard deviations
from the mean.

Coefficient value
Mean 3130.9931
S.E 72.7739
sigma”2 773259
log likelihood -1188.23
AIC 2380.45
BIC 2386.41

The model's log likelihood was calculated to be -1188.23, and its variance was found to be 773259. The
related values for the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC)
were calculated to be 2380.45 and 2386.41, respectively.
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The ARIMA(0,0,0) model was used to analyze a time series of millets production, and the results of these
statistical analyses shed light on the model's parameters and goodness of fit. The existence of a non-zero
mean coefficient in the millets production data is indicative of the presence of a trend or level. Millets
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cultivation could benefit from further investigation using this model, as it could shed light on the
underlying dynamics of production and lead to better decisions and planning.

Prediction information Lower (Lo 95) and higher (Hi 95) 95% confidence interval bounds for millets
production are included alongside the point projections for millets in the table. Time series data for millets
production, is used to construct forecasts using the ARIMA(0,0,0) model with a non-zero mean.

Point Forecast Lo 95 Hi 95
Feb 2019 3130.993 1407.496 4854.49
Mar 2019 3130.993 1407.496 4854.49
Apr 2019 3130.993 1407.496 4854.49
May 2019 3130.993 1407.496 4854.49
Jun 2019 3130.993 1407.496 4854.49

Jul 2019 3130.993 1407.496 4854.49
Aug 2019 3130.993 1407.496 4854.49
Sep 2019 3130.993 1407.496 4854.49
Oct 2019 3130.993 1407.496 4854.49

The projection indicates that millets output will remain largely constant at a predicted point value of
3130.993. The range in which the true millets production numbers are 95% likely to fall is estimated to
be 1407.496-4854.49, with a lower 95% confidence interval of 1407.496 and an upper 95% confidence
interval of 4854.49.

Stakeholders in the millets cultivation sector can use these predicted values and their associated confidence
intervals to better anticipate production trends and make decisions regarding resource allocation, market
planning, and agricultural management strategies.

The Box-Ljung test was run on the non-zero mean residuals of the ARIMA(0,0,0) model's predicted
millets production values. This analysis was performed to check for autocorrelation in the model's
residuals.

The p-value from the Box-Ljung test was 0.000579, and the X-squared value from the test was 21.77 (5
degrees of freedom). Significant autocorrelation in the residuals is strongly suggested, as the p-value is
much smaller than the specified significance level of 0.05. This suggests that there may be features or
trends in the millets production data that aren't accounted for by the ARIMA(0,0,0) model. If we want
more accurate and reliable millets production projections, we may need to do more research or use
different modeling methodologies.
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Decomposition of additive time series
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SEASONAL ARIMA ANALYSIS

Millets output data is available from 2007 to 2019 at a frequency of 1 year. Values of output for each
year are as follows: 3777, 4013, 3976, 1873, 3950, 4401, 3508, 2092, 3642, 2468, 2504, 2419, and 1941.
These figures indicate the annual output of millets for the given time frame, so they can shed light on
production patterns and trends over time.

Descriptive statistics used to summarize the millets production time series data shed light on the dataset's
central tendency and dispersion. Over the course of that time frame, the lowest amount of millets produced
was in 1873, and the highest was in 4401. Values of 2419 and 3950 are the 25th and 75th percentile
quartiles, respectively. Half of the production values are below this point, and the other half are beyond
it, as indicated by the median value of 3508. Taking into account all available data, we find that the mean
millets production is $3,120.

These statistical indicators help to shed light on the diversity of millets output by highlighting its range of
values and its central trend. As a result, stakeholders are able to make educated decisions and develop
effective strategies to boost agricultural productivity and sustainability in the millets cultivation sector
based on a more thorough understanding of the underlying trends, variations, and potential outliers in the
production data.

To further evaluate the stationarity of the data, the differenced logarithm of the millets production time
series (denoted by the notation diff(log(ts_Millets)) was subjected to the augmented Dickey-Fuller (ADF)
test. The goal of the differencing procedure is to minimize trends and stabilize the variation so that
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stationary patterns may be more easily identified. The Dickey-Fuller statistic was -4.7589, and the p-value
was 0.01. These findings come from the ADF test. There is substantial evidence to reject the null
hypothesis of non-stationarity in favor of the alternative hypothesis of stationarity, as the p-value is smaller
than the specified significance level of 0.05. This indicates that there are no discernible trends or patterns
in the differenced logarithm of the millet production data over time, suggesting that the data is stationary.
These results are essential for developing suitable time series models and forecasting approaches, which
in turn will allow for precise predictions and well-informed choices in the millets agriculture industry.

The logarithm of the millets production time series data is given by log(ts_Muillets), and the auto Arima
Model Log indicates the automated ARIMA model that was fitted to this data. The model was identified
as ARIMA(0,1,0), suggesting that first-order differencing was required to reach stationarity.

Coefficient Values
o? 0.1639
log likelihood -6.17
AIC 14.35
AlCc 14.75
BIC 14.83

The model's variance, was calculated to be 0.1639, and the log probability was -6.17. There were 14.35
for the Akaike Information Criterion (AIC), 14.75 for the AICc, and 14.83 for the Bayesian Information
Criterion (BIC).

It is impossible to assess the ARIMA model's ability to explain the millets production time series without
these statistical measurements. To compare and select the best model for assessing and forecasting millets
production patterns, the AIC, AICc, and BIC values are calculated. Forecasting and decision-making in
the millets agriculture sector can benefit greatly from the ARIMA(0,1,0) model and its associated
parameters and statistical metrics.

After fitting the ARIMA (0,1,0) model to the logarithm of the millets production time series data, the Box-
Ljung test was performed on the residuals. This analysis was performed to check for autocorrelation in
the model's residuals.

Coefficient Values
x? 3.5805

df 1
P-value 0.05846

The X-squared value for the Box-Ljung test came out to be 3.5805 with 1 degree of freedom, yielding a
p-value of 0.05846. As the p-value is larger than the threshold for statistical significance (0.05), it cannot
be concluded that there is no autocorrelation in the residuals. If the ARIMA model's residuals look like
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white noise, then the model does a good job of capturing the dynamics underlying the millets production
data.

Logarithmic millets production time series data are well represented by the ARIMA(0,1,0) model, as the
residuals closely follow the white noise assumption. That means we can confidently predict and analyze
changes in millets production for agriculturally informed decision making because the model sufficiently
accounts for the patterns and structures inherent in the data.
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8 8 o
n > -]
3 -3 2 %5 — TS | i S
[ - - =
= B = o N 2 ) R R —
ﬁ T T T T T T 2 8 Q T S . N L
2008 2012 2016 0 2 4 6 8 10
Year cycle(ts_Millets) Lag
Yield over the Year
Series apDiff i Series log(apNum)
n
w 3 o
233 = 0 5~ P
S L A= 2 . ———
g 9 T T T T T 8 ¥ T T T T T T L | T T T T T
2 4 6 8 10 g 2008 2010 2012 2014 2016 2018 0 2 4 6 8 10
Lag Time Lag
Series log(apNum) Forecasts from ARIMA(0,1,0)
[F.
< . I — il
k] 3] T T T 3
£ 2 g
o B 1 T T 1 T ] T T T
2 4 [ 8 10 2010 2015 2020
Lag

The following findings emerge from an examination of the ARIMA and Seasonal ARIMA models applied
to the time series data of millets production:

First, an ARIMA model was used to analyze the millets output data; specifically, an ARIMA(0,0,0) model
with a non-zero mean. Non-zero mean standard error was estimated to be 72.7739, with the coefficient
being 3130.9931. The model had an AIC of 2380.45, an AICc of 2380.54, and a BIC of 2386.41, and its
log likelihood was -1188.23. There may be autocorrelation in the residuals of the ARIMA model, as shown
by a significant result from the Box-Ljung test (X-squared = 21.77, df = 5, p-value = 0.000579).

The logarithm of the millets production data was modeled using the Seasonal ARIMA(0,1,0) model. Log
likelihood was -6.17, and the model's variance was found to be 0.1639. The model's AIC, AlCc, and BIC
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all came in at 14.83. According to the results of a Box-Ljung test conducted on the Seasonal ARIMA
model's residuals, the residuals are consistent with the white noise assumption (X-squared = 3.5805, df =
1, p-value = 0.05846).

Overall, autocorrelation difficulties were seen in the residuals of the ARIMA model with a non-zero mean,
suggesting that the model may have been inadequate in capturing the underlying dynamics of the millets
production data. The logarithm of the millets production data was reliably modeled using the Seasonal
ARIMA model, whose residuals resembled white noise. To improve the precision and consistency of the
millets production forecasts, it may be required to further investigate and refine the model.
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ABSTRACT

In order to predict paddy output in Tamil Nadu, this study uses time series analysis using the robust
ARIMA (AutoRegressive Integrated Moving Average) and SARIMA (Seasonal AutoRegressive
Integrated Moving Average) models. This research makes use of historical data covering a number of
years in order to investigate the complex temporal patterns and seasonal fluctuations that greatly affect
paddy yields in the area. The research is conducted with the intention of developing a reliable framework
for forecasting future paddy output, taking into account relevant aspects such as meteorological
fluctuations, irrigation techniques, and governmental interventions. Farmers, policymakers, and others in
the paddy cultivation sector can greatly benefit from a deeper understanding of the non-stationary and
seasonal components within the industry thanks to the combination of ARIMA and SARIMA models.
Sustainable and resilient paddy production in Tamil Nadu is ensured thanks to this study's contribution to
the improvement of agricultural plans and policies.

Keywords: Paddy, ARIMA, SARIMA, Forecasting.

INTRODUCTION

Producing paddy acts as a cornerstone of Tamil Nadu's agricultural economy. It plays a key role in
maintaining food security and sustaining the livelihoods of millions of people, making it one of the most
important agricultural activities in the state. Given the region's susceptibility to climate changes and the
ever-evolving agricultural techniques, it is becoming increasingly important to have a solid understanding
of the temporal patterns and complicated dynamics that control paddy farming. This research attempts to
provide a complete framework for forecasting paddy output in Tamil Nadu. It does so by utilizing time
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series analytic techniques, in particular the ARIMA (AutoRegressive Integrated Moving Average) and
SARIMA (Seasonal AutoRegressive Integrated Moving Average) models. This study aims to untangle
the temporal fluctuations and identify the important factors that influence paddy yield variability. It does
so by utilizing historical data and taking into consideration a variety of seasonal and trend components.
Ultimately, this study will use this information to make predictions. The combination of the ARIMA and
SARIMA models enables a more nuanced understanding of the seasonal patterns and their impact on
paddy production. This, in turn, makes it easier for farmers, policymakers, and other stakeholders invested
in the environmentally responsible growth of Tamil Nadu's agricultural landscape to make informed
decisions. This research has tremendous promise in improving the resilience and productivity of paddy
agriculture and, as a result, making a contribution to the overall agricultural sustainability and food
security in the region.

OBJECTIVE

1. To analyze historical time series data of paddy production in Tamil Nadu and identify the underlying
trends and patterns affecting production fluctuations.

2. To apply the ARIMA (AutoRegressive Integrated Moving Average) and SARIMA (Seasonal
AutoRegressive Integrated Moving Average) models to develop accurate and reliable forecasts for paddy
production in the region.

3. To assess the impact of seasonal variations, climatic factors, and agricultural practices on paddy
production, considering both short-term and long-term implications.

4. To compare the performance of the ARIMA and SARIMA models in capturing the seasonal variability
and fluctuations in paddy production, thereby determining the most suitable model for forecasting in the
context of Tamil Nadu's agricultural landscape.

5. To provide valuable insights for farmers, policymakers, and stakeholders, enabling informed decision-
making for sustainable agricultural planning and policy formulation aimed at enhancing paddy production
and ensuring food security in Tamil Nadu.

By achieving these objectives, this study aims to contribute to the development of robust forecasting
methodologies and data-driven strategies that will support the resilience and growth of the paddy
cultivation sector in Tamil Nadu, fostering sustainable agricultural practices and bolstering the region's
agricultural productivity.

LITERATURE SURVEY

Amarender and Ashwini Darekar invested India produces the second-most paddy in the world. About 35%
of net cultivated land and 50% of farmers grow paddy annually. Future harvest prices determine farmers'
paddy acreage decisions. This research proposes a method to forecast harvest prices and applies it to kharif
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2017-18. AGMARK's monthly average paddy prices from January 2006 to December 2016 were used.
The ARIMA (Box-Jenkins) model predicted paddy prices. R was used to estimate model parameters. The
model's goodness of fit was assessed using AIC, BIC, and MAPE. India-wide paddy price forecasts were
best with the ARIMA model. September—November is the kharif paddy harvest. For the 2017-18 kharif
harvest, paddy prices are expected to range from Rs. 1,600 to 2,200 per quintal.

The study by Saranyadevi and Kachi (2017), In this study, they investigate the predictive performance of
a time-series analytic method for paddy production patterns in the Indian state of Tamil Nadu. There was
a study that looked at paddy crop production data from 1960 to 2015 and predicted production for 2016—
2020 using ARIMA (Autor Regressive Integrated Moving Average), simple exponential smoothing,
brown exponential smoothing, and damped exponential smoothing models.

Joshua et al., (2021) Each model is evaluated using R2, RMSE, MAE, MSE, MAPE, CV, and NMSE.
The GRNN method outperforms other assessment measures, including R2, RMSE, MAE, MSE, MAPE,
CV, and NSME, with values of 0.9863, 0.2295, 0.1290, 0.0526, 1.3439, 0.0255, and 0.0136. These data
show that the system estimates crop yield better than other methods. The Generalized Regression Neural
Network (GRNN) model is compared to other models in literature studies. Using appropriate metrics,
the GRNN model has greater prediction accuracy.

Methodology

ARIMA Model (p,d,q):

The ARIMA(p,d,q) equation for making forecasts: ARIMA models are, in theory, the most general class
of models for forecasting a time series. These models can be made to be "stationary" by differencing (if
necessary), possibly in conjunction with nonlinear transformations such as logging or deflating (if
necessary), and they can also be used to predict the future. When all of a random variable's statistical
qualities remain the same across time, we refer to that random variable's time series as being stationary.
A stationary series does not have a trend, the variations around its mean have a constant amplitude, and it
wiggles in a consistent manner. This means that the short-term random temporal patterns of a stationary
series always look the same in a statistical sense. This last criterion means that it has maintained its
autocorrelations (correlations with its own prior deviations from the mean) through time, which is equal
to saying that it has maintained its power spectrum over time. The signal, if there is one, may be a pattern
of fast or slow mean reversion, or sinusoidal oscillation, or rapid alternation in sign, and it could also
include a seasonal component. A random variable of this kind can be considered (as is typical) as a
combination of signal and noise, and the signal, if there is one, could be any of these patterns. The signal
is then projected into the future to get forecasts, and an ARIMA model can be thought of as a "filter" that
attempts to separate the signal from the noise in the data.
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The ARIMA forecasting equation for a stationary time series is a linear (i.e., regression-type) equation
in which the predictors consist of lags of the dependent variable and/or lags of the forecast errors. That
is:

Predicted value of Y = a constant and/or a weighted sum of one or more recent values of Y and/or
a weighted sum of one or more recent values of the errors.

Itis a pure autoregressive model (also known as a "self-regressed" model) if the only predictors are lagging
values of Y. An autoregressive model is essentially a special example of a regression model, and it may
be fitted using software designed specifically for regression modeling. For instance, a first-order
autoregressive ("AR(1)") model for Y is an example of a straightforward regression model in which the
independent variable is just Y with a one-period lag (referred to as LAG(Y,1) in Statgraphicsand Y_LAG1
in Regresslt, respectively). Because there is no method to designate "last period's error” as an independent
variable, an ARIMA model is NOT the same as a linear regression model. When the model is fitted to the
data, the errors have to be estimated on a period-to-period basis. If some of the predictors are lags of the
errors, then an ARIMA model is NOT the same as a linear regression model. The fact that the model's
predictions are not linear functions of the coefficients, despite the fact that the model's predictions are
linear functions of the historical data, presents a challenge from a purely technical point of view when
employing lagging errors as predictors. Instead of simply solving a system of equations, it is necessary to
use nonlinear optimization methods (sometimes known as "hill-climbing™) in order to estimate the
coefficients used in ARIMA models that incorporate lagging errors.

Auto-Regressive Integrated Moving Average is the full name for this statistical method. Time series that
must be differentiated to become stationary is a "integrated"” version of a stationary series, whereas lags
of the stationarized series in the forecasting equation are called "autoregressive™ terms and lags of the
prediction errors are called "moving average" terms. Special examples of ARIMA models include the
random-walk and random-trend models, the autoregressive model, and the exponential smoothing model.

A nonseasonal ARIMA model is classified as an "ARIMA(p,d,q)" model, where:

e pisthe number of autoregressive terms,
e disthe number of nonseasonal differences needed for stationarity, and
e ( isthe number of lagged forecast errors in the prediction equation.

o The forecasting equation is constructed as follows. First, let Y denote the d™ difference of Y,
which means:

. If d=0: yt = Yt

° If d:1 yt = Yt - Yt—l

o Ifd=2: yy ==Y 1)) - Vo1 —Yi2) =Y, =2V 1 + Y
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« Note that the second difference of Y (the d=2 case) is not the difference from 2 periods
ago. Rather, it is the first-difference-of-the-first difference, which is the discrete analog of a
second derivative, i.e., the local acceleration of the series rather than its local trend.

« Interms of Y, the general forecasting equation is:
e i=p+oiVi g+t opYep — 0161 — = 048

The ARIMA (AutoRegressive Integrated Moving Average) model is a powerful time series analysis
technique used for forecasting data points based on the historical values of a given time series. It consists
of three key components: AutoRegression (AR), Integration (1), and Moving Average (MA).

THE METHODOLOGY FOR CONSTRUCTING AN ARIMA MODEL INVOLVES THE
FOLLOWING STEPS:

1. Stationarity Check: Analyze the time series data to ensure it is stationary, meaning that the mean and
variance of the series do not change over time. Stationarity is essential for ARIMA modeling.

2. Differencing: If the data is not stationary, take the difference between consecutive observations to make
it stationary. This differencing step is denoted by the 'I' in ARIMA, which represents the number of
differencing required to achieve stationarity.

3. Identification of Parameters: Determine the values of the three main parameters: p, d, and g, where p
represents the number of autoregressive terms, d represents the degree of differencing, and q represents
the number of moving average terms.

4. Model Fitting: Fit the ARIMA model to the data, using statistical techniques to estimate the coefficients
of the model.

5. Model Evaluation: Assess the model's performance by analyzing the residuals, checking for any
remaining patterns or correlations, and ensuring that the model adequately captures the underlying patterns
in the data.

6. Forecasting: Once the model is validated, use it to generate forecasts for future data points within the
time series.

SEASONAL ARIMA:

By including seasonal variations into the ARIMA model, Seasonal ARIMA (SARIMA) is a robust
technique for analyzing and forecasting time series data. It works well for examining and forecasting sales
data, weather patterns, and economic indicators that are subject to seasonal changes. Financial markets,
economics, and even meteorology all make use of SARIMA models.
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Mathematical Formulation:
The SARIMA model is denoted as SARIMA(p,d,q)(P,Q,D)[s], where:

e Non-seasonal autoregressive (p), differencing (d), and moving average (q) are the possible orders
of analysis.

e The seasonal autoregressive, differencing, and moving average orders are denoted by the letters P,
D, and Q, respectively.

e The length of one season is denoted by the symbol S.

The SARIMA model can be represented as follows:
(1—@1B == @pBP)(1 = ¢;BY — - — pB"*)P (B")"Y,
= (14 60,B+ -+ 60pB?)(1+ 6,BVS + --- + 0,B?5)A(B?5)K¢,
Where:

e (;and 6; are the autoregressive and moving average parameters, respectively.

e B and B"S are the non- seasonal and seasonal backshift operators, respectively.

e P,D,A and K are the orders of the seasonal autoregressive differencing, moving average, and
backshift components, respectively.

e Y, represents the time series data at time t.

e &, denotes the white noise error term.

Real life application

One example of how SARIMA might be put to use in the real world is in the process of predicting quarterly
sales data for a retail organization. The sales data frequently display seasonal patterns because of things
like the different holiday seasons and different promotional periods. The company is able to examine
previous sales data, recognize seasonal patterns, and make more accurate projections of future sales by
using a model called SARIMA.

Merits and Demerits:

e When applied to time series data, SARIMA models are able to distinguish between seasonal and
non-seasonal patterns.

e They are useful when anticipating data with intricate seasonal trends because of their effectiveness.

e The SARIMA models can be altered to accommodate a wide variety of seasonal data types, which
lends them flexibility and adaptability.
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e They produce accurate estimates for forecasts ranging from the short to the medium term.

e SARIMA models can be complicated, particularly when dealing with a number of different
seasonal components, which calls for a substantial amount of computational resources.

e Due to the complexity of the mathematical formulas, interpretation of the SARIMA results may
be difficult for individuals who are not experts in the field.

e For SARIMA models to generate reliable forecasts, a significant quantity of historical data is
necessary; however, this data may not always be accessible for all forms of data.

Preparation of Data:

e Prepare the time series data for analysis by collecting and cleaning it such that it is consistent and
has no outliers or missing values.
e Applying a transformation or differentiating if necessary to reach stationarity.

Identification of Models:

e Determine the values of the AR and MA parameters during the season and the offseason by
analyzing the ACF and PACF graphs.
e Determine the differencing (d) and seasonal (D) orders required to achieve stationarity.

Estimating Variables:

e Apply the SARIMA model's estimated parameters using estimation strategies like maximum
likelihood.
o lteratively fit the model while taking both seasonal and non-seasonal factors into account.

Model Evaluation and Adjustment:

e Examine diagnostic charts for evidence of residual randomness after a SARIMA model has been
fitted to the data.

e Analyze the residuals using autocorrelation functions (ACF) plots, histograms, and the Ljung-Box
test.

Analysis
ARIMA Models

In the analysis of the paddy production data from Tamil Nadu, several steps were undertaken to identify
an appropriate time series model. The data was initially examined for stationarity through visual inspection
of the plot and confirmed using the Auto correlation function (ACF) and Partial ACF (PADF) tests.
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Following this, the “auto.arima” function was applied to determine the best-fitting model. The function
iteratively evaluated various combinations of AR, MA, and differencing orders to select the model that
exhibited the lowest information criterion values, signifying a good fit. This comprehensive process
allowed for the identification of a suitable SARIMA model that can accurately capture the seasonal and
non-seasonal patterns within the paddy production data of Tamil Nadu.

Models Values
ARIMA (2,0,2) (1,0,1) [12] with non-zero mean Inf
ARIMA (0,0,0) with non-zero mean 2267.311
ARIMA (1,0,0) (1,0,0) [12] with non-zero mean 2271.146
ARIMA (0,0,1) (0,0,1) [12] with non-zero mean 2268.206
ARIMA (0,0,0) with zero mean 2774.681
ARIMA (0,0,0) (1,0,0) [12] with non-zero mean 2269.197
ARIMA (0,0,0) (0,0,1) [12] with non-zero mean 2269.13
ARIMA (0,0,0) (1,0,1) [12] with non-zero mean 2270.753
ARIMA (1,0,0) with non-zero mean 2269.148
ARIMA (0,0,1) with non-zero mean 2269.047
ARIMA (1,0,1) with non-zero mean 2270.643

The ARIMA (0,0,0) model with a non-zero mean was chosen as the best fit based on the AIC values.
Since the optimal model for predicting paddy production time series data in Tamil Nadu does not include
differencing, autoregressive, or moving average terms, it follows that these methods should be avoided.
The trend and seasonality of paddy output may be better predicted, allowing for more well-informed
decisions to be made in agricultural planning and policy formulation in the region, if this model were
analyzed in greater depth.
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Coefficient Values
Mean 3384.2897
S.E 49.2651
o? 354366
log likelihood -1131.66
AIC 2267.31
AlCc 2267.4
BIC 2273.26

Time series data for paddy production in Tamil Nadu were analyzed using the ARIMA(0,0,0) model with
a non-zero mean. With a coefficient estimate of 3384.2897 and a standard error of 49.2651, the model
produced a point estimate of the mean value. The o2 value for the model was found to be 354366. The
model had a log likelihood of -1131.66, therefore the Akaike Information Criterion (AIC) was 2267.31,
the AICc was 2267.4, and the Bayesian Information Criterion (BIC) was 2273.26. Insights into the
statistical parameters and goodness of fit for the ARIMA(0,0,0) model are provided by this model's output,
allowing for a deeper dive into the inner workings of paddy production in Tamil Nadu. More research is
needed to improve predictions and direct productive agricultural policies and practices in the area.

Year forecast Lo 95 Hi 95
Feb 2019 3384.29 2217.549 4551.03
Mar 2019 3384.29 2217.549 4551.03
Apr 2019 3384.29 2217.549 4551.03
May 2019 3384.29 2217.549 4551.03
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Jun 2019 3384.29 2217.549 4551.03
Jul 2019 3384.29 2217.549 4551.03
Aug 2019 3384.29 2217.549 4551.03
Sep 2019 3384.29 2217.549 4551.03
Oct 2019 3384.29 2217.549 4551.03

Point projections and 95% confidence intervals for paddy production in Tamil Nadu are available in the
forecast_data_paddy for the time period of February 2019 through November 2019. With a lower 95%
confidence interval of 2217.549 and an upper 95% confidence interval of 4551.03, the forecast indicates
that the anticipated paddy production remains constant at 3384.29 for each month within the forecast
period. The ARIMA(0,0,0) model predicts that paddy output will be steady, with no noticeable changes,
throughout the designated forecast months. In order to make informed decisions on agricultural planning
and policy in the region, more in-depth monitoring and research is necessary.

The residuals of the predicted paddy output statistics in Tamil Nadu were put through the Box-Ljung test.
A 5-second time delay was used in the Ljung-Box test. With 5 degrees of freedom, the X-squared value
is 20.254, which is statistically significant (p = 0.00112). The presence of autocorrelation in the residuals
is strongly suggested by the low p-value, which is evidence against the null hypothesis of independence.
The residuals' autocorrelation shows that the ARIMA(0,0,0) model may not accurately represent all the
dynamics at play in the paddy production time series. Accurate and trustworthy forecasting is essential for
strategic agricultural planning and decision making in the region, so understanding the autocorrelation
structure is a top priority.

Decomposition of additive time series

observed

trend

IS TN N I TN S Y I |

random seasonal
<1000 O 100060 -50 S0 3320 3380 2500 3500 4500

2008 2010 2012 2014 2016 2018
Time

i"%-t_géIJFANS 8l4|Page

l # International Journal of
Food And Nutritional Sciences
omcia P ot

S Nutrtion Sclentists




IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876

Research paper [CR PRI\ W RAELT L MUGC CARE Listed ( Group -1) Journal Volume 11, Iss 2, Feb 2022

SEASONAL ARIMA ANALYSIS

Time series data for paddy production was generated in R. The time series begins in 2007 and continues
through 2019 at a rate of 1. The numbers 3809, 3562, 3630, 2463, 3687, 4429, 4123, 2712, 3918, 3039,
3070, 2682, and 2817 may be found in the data set.

Verification was performed to ensure that the time series data is indeed an object of class "ts," indicating
that it is a time series. Paddy yields were plotted against time to show how they had changed during the
selected period.

In addition, the stationarity of the time series data was evaluated using the Augmented Dickey-Fuller
(ADF) test. The ADF test yielded a p-value of 0.6578 and a Dickey-Fuller statistic of -1.7758 for a lag
order of 2. There is insufficient evidence to reject the null hypothesis of non-stationarity because the p-
value is greater than the significance level of 0.05. To provide precise modeling and forecasting of paddy
output in the region, more research is needed to investigate the stationarity of the time series data.

Paddy production time series summary (ts_paddy) provides an overview of the statistical measures that
define this data collection. Paddy production fell as low as 2463 over the stipulated time period, while the
first quartile number was at 2817, marking the bottom of the middle 50 percent. The average is set at 3380,
while the median is set at 3562. At 3809, the third quartile number marks the top end of the middle quartile.
During the given time period, paddy production peaked at a value of $4,429. Insights into the mean and
standard deviation of the paddy production dataset are provided by these summaries, which aid in drawing
conclusions about the yield distribution and trends over the given time period.

The differenced logarithm of the ts_paddy dataset was subjected to an Augmented Dickey-Fuller (ADF)
test to determine whether or not the paddy production time series data were stationary. The variance was
reduced using logarithmic transformation, and stationarity was attained via differencing.

The Dickey-Fuller statistic for the ADF test was -4.6604, and the corresponding p-value was 0.01. There
is strong evidence to reject the null hypothesis of non-stationarity in favor of the alternative hypothesis of
stationarity, as the p-value is significantly lower than the specified significance level of 0.05. If the
differenced logarithm of the paddy production time series is stationary, then the data points are
independent of time and consistently exhibit statistical features. To better predict and analyze paddy
production trends in Tamil Nadu, this transformation improves the data's appropriateness for analysis
using time series models like ARIMA and SARIMA.

Coefficient Values
o? 0.06275
log likelihood -0.42
AIC 2.83
AlCc 3.23
BIC 3.31
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Using the auto.arima function, we can see that auto Arima Model Log represents the logarithm of the
paddy production time series data. With a value of 1 for the 'd' parameter, which indicates consideration
of the first difference, stationarity in the data was sought. The log-transformed paddy production data was
fed into the auto.arima function, and the resulting output shows that an ARIMA model with a difference
order of 1 was selected. The nomenclature for this model is ARIMA (0, 1, 0). The model had a log-
likelihood of -0.42, and its estimated variance was 0.06275. The calculations yielded an Akaike
Information Criterion (AIC) value of 2.83, an Akaike Information Criterion (AICc) value of 3.23, and a
Bayesian Information Criterion (BIC) value of 3.31. This information is useful for assessing the validity
of the selected ARIMA model for the log-transformed paddy production data, as it sheds light on the
model's internal structure and goodness-of-fit. This model looks to be an excellent fit for the data, as seen
by its simplicity and low variance estimate, allowing for more accurate estimates and a better
understanding of the processes at play in Tamil Nadu's paddy production dynamics.

After applying the ARIMA model, auto Arima Model Log, to the log-transformed paddy production data,
the residuals were analyzed using the Ljung-Box test. The aim of the analysis was to determine if the
model residuals exhibited autocorrelation.

Coefficient Values
x? 3.3996

df 1
P-value 0.06521

The Ljung-Box test returns a significance level of 0.06521 for an X-squared value of 3.3996 with 1 degrees
of freedom. There is insufficient evidence to conclude that the residuals exhibit significant autocorrelation,
as the p-value is larger than.05. Because of the good fit between the data and the ARIMA (0,1,0) model,
we may infer that the model appropriately explains the observed variability in the log-transformed paddy
production data. It's possible that more research is needed to verify the model's accuracy and guarantee
precise forecasting of paddy output patterns in Tamil Nadu.
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The original time series data was analyzed using the ARIMA model, and an ARIMA (0,0,0) model was
found to be the best appropriate for projecting paddy output in Tamil Nadu. Nonetheless, autocorrelation
was detected in the model residuals via the Box-Ljung test, suggesting that the model may be inadequate
in its attempt to capture all underlying patterns. To address this, we first converted the data using a
logarithmic function, then differentiated it, before fitting the data with the ARIMA (0,1,0) model and
observing a good fit with negligible residual autocorrelation.

When applied to the log-transformed paddy production data, the ARIMA (0,1,0) model revealed time-
dependent patterns that clarified the dynamics. The model showed a good fit to the data and had a low
variance estimate.

While the ARIMA models did provide some useful information, it may be necessary to take a broader
approach, such as using the SARIMA model, in order to capture the probable seasonal fluctuations and
increase the precision of future paddy production estimates. To better guide agricultural planning and
policy-making in Tamil Nadu's paddy cultivation sector, the SARIMA model might be implemented to
provide a more rigorous framework for understanding seasonal dynamics and increasing the precision of
predictions.
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To better capture the seasonal patterns and fluctuations in paddy production and to aid in the development
of accurate forecasts and well-informed policy decisions for environmentally friendly farming in the
region, more research and analysis using SARIMA modeling techniques are recommended.
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ABSTRACT:

This study digs into the complex factors that impact the cultivation of pulses in Tamil Nadu, India. The
study's overarching goal is to identify the primary determinants influencing pulse production in the region
through the application of an integrative methodology that takes into account the influential variables of
soil quality, climate fluctuations, and farming practices. The study's primary goal is to develop a robust
framework for long-term vyield prediction using state-of-the-art ARIMA (AutoRegressive Integrated
Moving Average) and SARIMA (Seasonal AutoRegressive Integrated Moving Average) models for
pulses. The study utilizes historical data to investigate the intricate interconnections within the agricultural
ecosystem by analyzing seasonal fluctuations, trend patterns, and other dynamic factors impacting pulses
output. This study's findings can help improve food security and agricultural resilience in Tamil Nadu by
informing the creation of data-driven initiatives, the promotion of sustainable farming practices, and the
design of policy.

Keywords: Pulses, ARIMA, SARIMA, Forecasting.

INTRODUCTION

In the many different agroclimatic zones that make up Tamil Nadu, India, the production of pulses plays
an essential part in the improvement of food security and the promotion of sustainable agriculture. The
cultivation of pulses is met with a variety of obstacles resulting from a number of different elements, such
as the unpredictability of the climate, the quality of the soil, and diverse agronomic approaches. It is vital
to have an understanding of the complex interplay that exists between these aspects in order to develop
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effective methods that will increase pulses output and assure agricultural sustainability. In order to
investigate the various aspects that play a role in pulses production in Tamil Nadu, this study takes a
predictive modeling method. More specifically, it integrates the powerful ARIMA (AutoRegressive
Integrated Moving Average) and SARIMA (Seasonal AutoRegressive Integrated Moving Average)
models.

The purpose of this study is to shed light on the complex dynamics that are effecting the cultivation of
pulses by drawing on historical data and taking into consideration a wide array of influential elements.
The major goal is to determine the most important parameters that have an effect on the production of
pulses and to create a predictive model that accurately represents the temporal variation in pulses yields.
This research aims to provide valuable insights for stakeholders, policymakers, and farmers through an
exhaustive analysis of the factors influencing pulses production and the predictive capabilities of the
ARIMA and SARIMA models. These insights will facilitate informed decision-making for sustainable
agricultural practices and policy formulations. The findings of this research have the potential to make a
substantial contribution to the improvement of pulses production, hence increasing agricultural resilience
and promoting food security in the Indian state of Tamil Nadu.

OBJECTIVES:

1. To identify and analyze the key factors influencing pulses production in Tamil Nadu, including but not
limited to climatic variations, soil quality, and agricultural practices.

2. To develop a predictive model for pulses production using the ARIMA (AutoRegressive Integrated
Moving Average) and SARIMA (Seasonal AutoRegressive Integrated Moving Average) models, aiming
to accurately capture the temporal variations and fluctuations in pulses yield.

3. To assess the impact of seasonal changes and other dynamic factors on pulses production, aiming to
understand their influence on the predictive capabilities of the ARIMA and SARIMA models.

4. To compare the performance of the ARIMA and SARIMA models in predicting pulses production,
aiming to determine the model that provides the most reliable and accurate forecasts for pulses cultivation
in Tamil Nadu.

5. To provide valuable insights for stakeholders, policymakers, and farmers, enabling informed decision-
making for the implementation of sustainable agricultural practices and policies that support the growth
and stability of pulses production in the region.

By achieving these objectives, this study seeks to contribute to the development of effective strategies for
enhancing pulses production in Tamil Nadu, promoting agricultural sustainability and food security in the
state.
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LITERATURE REVIEW:

In their study, Bhanudas and Afreen (2019) discuss the problems that face modern agriculture and offer
novel approaches to optimizing agricultural resources and managing crops. Their research highlights the
fundamental reliance of agricultural performance on soil and water management, highlighting the central
role of agronomy in national growth. In order to increase crop productivity with little water use, the study
promotes a variety of irrigation methods. It also shows how little farmers know about agricultural
regulations and government policy. The research goes into the factors that go into farmers' decisions on
crop rotation, watering practices, and soil composition. The use of several different Data Mining
classification algorithms, such as JRip and Naive Bayes, to make accurate assessments of soil quality is a
major focus of this study. The research highlights the potential of the JRip classification method for precise
soil classification and management by comparing it to the Nave Bayes method on two common soil types,
Red and Black soil.

Future wheat harvest prices in India are forecast using the ARIMA model of Darekar and Amarender
(2018). The model predicts wheat prices with 95% accuracy using monthly modal price data from January
2006 to June 2017. Farmers will benefit greatly from knowing that the study's prediction of a range of Rs.
1,620 to Rs. 2,080 per quintal for wheat market prices during the 2017-18 harvest season is accurate.
Farmers are able to make more educated judgments on wheat acreage thanks to the ARIMA model's high
level of accuracy.

Kour et al. (2017) analyzed pearl millet (Pennisetum glaucum), a commonly farmed cereal crop that ranks
fourth in global cultivation behind rice, wheat, and sorghum. Despite rising yields, pearl millet cultivation
in Gujarat, India, has declined during the previous two decades. Pearl millet production forecasts are
especially important in semi-arid locations like Gujarat, where precipitation lasts only four months. This
study predicts Gujarat pearl millet productivity using the ARIMA model. The current study collected time
series data on pearl millet productivity (kg/ha) in Gujarat from 1960-61 to 2011-12. Gandhinagar's
Directorate of Agriculture and, partially, the Directorate of Economics and Statistics provided the data.
RMAPE, MAD, and RMSE values are used to validate the ARIMA model. As seen by its RMAPE score
below 6%, the ARIMA (0, 1, 1) model performs well.

METHODOLOGY

ARIMA Model (p,d,q):

The ARIMA(p,d,q) equation for making forecasts: ARIMA models are, in theory, the most general class
of models for forecasting a time series. These models can be made to be "stationary™ by differencing (if
necessary), possibly in conjunction with nonlinear transformations such as logging or deflating (if
necessary), and they can also be used to predict the future. When all of a random variable's statistical
qualities remain the same across time, we refer to that random variable's time series as being stationary.
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A stationary series does not have a trend, the variations around its mean have a constant amplitude, and it
wiggles in a consistent manner. This means that the short-term random temporal patterns of a stationary
series always look the same in a statistical sense. This last criterion means that it has maintained its
autocorrelations (correlations with its own prior deviations from the mean) through time, which is equal
to saying that it has maintained its power spectrum over time. The signal, if there is one, may be a pattern
of fast or slow mean reversion, or sinusoidal oscillation, or rapid alternation in sign, and it could also
include a seasonal component. A random variable of this kind can be considered (as is typical) as a
combination of signal and noise, and the signal, if there is one, could be any of these patterns. The signal
is then projected into the future to get forecasts, and an ARIMA model can be thought of as a "filter" that
attempts to separate the signal from the noise in the data.

The ARIMA forecasting equation for a stationary time series is a linear (i.e., regression-type) equation
in which the predictors consist of lags of the dependent variable and/or lags of the forecast errors. That
is:

Predicted value of Y = a constant and/or a weighted sum of one or more recent values of Y and/or
a weighted sum of one or more recent values of the errors.

Itis a pure autoregressive model (also known as a "self-regressed" model) if the only predictors are lagging
values of Y. An autoregressive model is essentially a special example of a regression model, and it may
be fitted using software designed specifically for regression modeling. For instance, a first-order
autoregressive ("AR(1)") model for Y is an example of a straightforward regression model in which the
independent variable is just Y with a one-period lag (referred to as LAG(Y,1) in Statgraphicsand Y_LAG1
in Regresslt, respectively). Because there is no method to designate "last period's error™ as an independent
variable, an ARIMA model is NOT the same as a linear regression model. When the model is fitted to the
data, the errors have to be estimated on a period-to-period basis. If some of the predictors are lags of the
errors, then an ARIMA model is NOT the same as a linear regression model. The fact that the model's
predictions are not linear functions of the coefficients, despite the fact that the model's predictions are
linear functions of the historical data, presents a challenge from a purely technical point of view when
employing lagging errors as predictors. Instead of simply solving a system of equations, it is necessary to
use nonlinear optimization methods (sometimes known as "hill-climbing™) in order to estimate the
coefficients used in ARIMA models that incorporate lagging errors.

Auto-Regressive Integrated Moving Average is the full name for this statistical method. Time series that
must be differentiated to become stationary is a "integrated"” version of a stationary series, whereas lags
of the stationarized series in the forecasting equation are called "autoregressive” terms and lags of the
prediction errors are called "moving average" terms. Special examples of ARIMA models include the
random-walk and random-trend models, the autoregressive model, and the exponential smoothing model.
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A nonseasonal ARIMA model is classified as an "ARIMA(p,d,q)" model, where:

e pisthe number of autoregressive terms,
o dis the number of nonseasonal differences needed for stationarity, and
e @ isthe number of lagged forecast errors in the prediction equation.

o The forecasting equation is constructed as follows. First, let Y denote the d™ difference of Y,
which means:

e Ifd=1: yt = Yt - Yt—l

o Ifd=2: Y=V =Y1)) - Vo1 — Vi) =Y, =2V 1 + Y,

« Note that the second difference of Y (the d=2 case) is not the difference from 2 periods
ago. Rather, it is the first-difference-of-the-first difference, which is the discrete analog of a
second derivative, i.e., the local acceleration of the series rather than its local trend.

« Interms of Y, the general forecasting equation is:
c Vi=utoiVrg oY p — 01601 — = OgEg

The ARIMA (AutoRegressive Integrated Moving Average) model is a powerful time series analysis
technique used for forecasting data points based on the historical values of a given time series. It consists
of three key components: AutoRegression (AR), Integration (1), and Moving Average (MA).

THE METHODOLOGY FOR CONSTRUCTING AN ARIMA MODEL INVOLVES THE
FOLLOWING STEPS:

1. Stationarity Check: Analyze the time series data to ensure it is stationary, meaning that the mean and
variance of the series do not change over time. Stationarity is essential for ARIMA modeling.

2. Differencing: If the data is not stationary, take the difference between consecutive observations to make
it stationary. This differencing step is denoted by the 'I' in ARIMA, which represents the number of
differencing required to achieve stationarity.

3. ldentification of Parameters: Determine the values of the three main parameters: p, d, and g, where p
represents the number of autoregressive terms, d represents the degree of differencing, and q represents
the number of moving average terms.

4. Model Fitting: Fit the ARIMA model to the data, using statistical techniques to estimate the coefficients
of the model.
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5. Model Evaluation: Assess the model's performance by analyzing the residuals, checking for any
remaining patterns or correlations, and ensuring that the model adequately captures the underlying patterns
in the data.

6. Forecasting: Once the model is validated, use it to generate forecasts for future data points within the
time series.

SEASONAL ARIMA:

By including seasonal variations into the ARIMA model, Seasonal ARIMA (SARIMA) is a robust
technique for analyzing and forecasting time series data. It works well for examining and forecasting sales
data, weather patterns, and economic indicators that are subject to seasonal changes. Financial markets,
economics, and even meteorology all make use of SARIMA models.

Mathematical Formulation:
The SARIMA model is denoted as SARIMA(p,d,q)(P,Q,D)[s], where:

e Non-seasonal autoregressive (p), differencing (d), and moving average (q) are the possible orders
of analysis.

e The seasonal autoregressive, differencing, and moving average orders are denoted by the letters P,
D, and Q, respectively.

e The length of one season is denoted by the symbol S.

The SARIMA model can be represented as follows:
(1—¢B—-—@pB”)(1 = ¢,B" —---— pB"*)F(B"*)PY,
=(1+6,B+ -+ 60pB?)(1+6,B" + -+ 0,B95)4(B?5)K¢,
Where:
e (;and 6; are the autoregressive and moving average parameters, respectively.
e B and B"S are the non- seasonal and seasonal backshift operators, respectively.
e P,D,A and K are the orders of the seasonal autoregressive differencing, moving average, and
backshift components, respectively.

e Y, represents the time series data at time t.
e &, denotes the white noise error term.
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Real life application

One example of how SARIMA might be put to use in the real world is in the process of predicting quarterly
sales data for a retail organization. The sales data frequently display seasonal patterns because of things
like the different holiday seasons and different promotional periods. The company is able to examine
previous sales data, recognize seasonal patterns, and make more accurate projections of future sales by
using a model called SARIMA.

Merits and Demerits:

e When applied to time series data, SARIMA models are able to distinguish between seasonal and
non-seasonal patterns.

e They are useful when anticipating data with intricate seasonal trends because of their effectiveness.

e The SARIMA models can be altered to accommodate a wide variety of seasonal data types, which
lends them flexibility and adaptability.

e They produce accurate estimates for forecasts ranging from the short to the medium term.

e SARIMA models can be complicated, particularly when dealing with a number of different
seasonal components, which calls for a substantial amount of computational resources.

e Due to the complexity of the mathematical formulas, interpretation of the SARIMA results may
be difficult for individuals who are not experts in the field.

e For SARIMA models to generate reliable forecasts, a significant quantity of historical data is
necessary; however, this data may not always be accessible for all forms of data.

Preparation of Data:

e Prepare the time series data for analysis by collecting and cleaning it such that it is consistent and
has no outliers or missing values.

e Applying a transformation or differentiating if necessary to reach stationarity.

Identification of Models:

e Determine the values of the AR and MA parameters during the season and the offseason by
analyzing the ACF and PACF graphs.

e Determine the differencing (d) and seasonal (D) orders required to achieve stationarity.
Estimating Variables:

o Apply the SARIMA model's estimated parameters using estimation strategies like maximum
likelihood.

o lteratively fit the model while taking both seasonal and non-seasonal factors into account.
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Model Evaluation and Adjustment:

e Examine diagnostic charts for evidence of residual randomness after a SARIMA model has been
fitted to the data.

e Analyze the residuals using autocorrelation functions (ACF) plots, histograms, and the Ljung-Box
test.

ANALYSIS:
ARIMA

The manufacturing of pulses in Tamil Nadu was analyzed, and the process included a number of processes
that were very important. First, the data from the time series were tested with a variety of statistical
methods to determine whether or not they were stationary. These methods included the Auto Correlation
function (ACF) and Partial Auto Correlation Function(PACF). After that, the auto.arima function was
utilized in order to ascertain the model that provided the most accurate results, taking into consideration
the information criteria such as AIC and BIC. After that, the model that was selected underwent validation
as well as cross-validation to guarantee its robustness and dependability. The employment of the
auto.arima function not only simplified the process of model selection but also offered a more objective
methodology, which made it possible to choose the best model for the pulses production dataset in Tamil
Nadu. This was accomplished through the streamlining of the process.

Time series data for pulses production was subjected to the augmented Dickey-Fuller (ADF) test. This
statistical test is used to determine whether or not the dataset is stationary, a prerequisite for using time
series models and other forecasting methods.

The Dickey-Fuller statistic for the ADF test is -10.283, and the associated p-value is 0.01. Since the p-
value is less than the selected significance level of 0.05, we can conclude that the alternative hypothesis
of stationarity is more likely to be correct. This suggests that the statistical features of the pulses production
time series data are consistent across time, or that the data exhibits a stationary behavior.

Pulses production data must be confirmed as stationary before any time series modeling or forecasting
techniques can be applied correctly. These findings lay a solid groundwork for creating accurate models
and projections, which in turn facilitates well-informed decision making and strategic planning in the field
of pulses cultivation and agriculture.

ARIMA (2,0,2) (1,0,1) [12] with non-zero mean Inf
ARIMA (0,0,0) with non-zero mean 1919.628
ARIMA (1,0,0) (1,0,0) [12] with non-zero mean 1901.353
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ARIMA (0,0,1) (0,0,1) [12] with non-zero mean 1901.048
ARIMA (0,0,0) with zero mean 2257.753
ARIMA (0,0,1) with non-zero mean 1899.466
ARIMA (0,0,1) (1,0,0) [12] with non-zero mean 1900.973
ARIMA (0,0,1) (1,0,1) [12] with non-zero mean 1902.973
ARIMA (1,0,1) with non-zero mean 1900.149
ARIMA (0,0,2) with non-zero mean 1897.978
ARIMA (0,0,2) (1,0,0) [12] with non-zero mean Inf
ARIMA (0,0,2) (0,0,1) [12] with non-zero mean Inf
ARIMA (0,0,2) (1,0,1) [12] with non-zero mean Inf
ARIMA (1,0,2) with non-zero mean 1897.787
ARIMA (1,0,2) (1,0,0) [12] with non-zero mean Inf
ARIMA (1,0,2) (0,0,1) [12] with non-zero mean Inf
ARIMA (1,0,2) (1,0,1) [12] with non-zero mean Inf
ARIMA (2,0,2) with non-zero mean Inf
ARIMA (1,0,3) with non-zero mean Inf
ARIMA (0,0,3) with non-zero mean Inf
ARIMA (2,0,1) with non-zero mean Inf
ARIMA (2,0,3) with non-zero mean Inf
ARIMA (1,0,2) with zero mean Inf

The time series data for pulses production, were fit with the ARIMA(1,0,2) model with a non-zero mean
using the auto.arima function and the Akaike information criterion (AIC). According to the automated
model selection procedure, this ARIMA model is the best fit for capturing the salient features and trends
in the pulses production data.
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The ARIMA(1,0,2) model had the lowest AIC value, indicating that it provided a better match than the
other candidate models considered. The approach took into account a wide range of possible AR and MA
word combinations before arriving at the final, best-suited one.

The auto.arima function seeks to provide an efficient framework for precisely capturing the temporal
dynamics and variations in the pulses production data by selecting the ARIMA(1,0,2) model as the most
suited. This model has the potential to be a useful resource for foreseeing trends and making well-informed
decisions in the fields of agriculture and pulses farming.

Coefficient arl mal ma2 mean
S.E -0.2430 0.7324 0.4752 550.6500
0.1353 0.1632 0.3841 23.8305

The ARIMA(1,0,2) model with a non-zero mean for the pulses production time series data, is represented
by the following coefficients:

- Autoregressive term: AR(1) coefficient (arl) = -0.2430
- Moving average terms: MA(1) coefficient (mal) = 0.7324 and MA(2) coefficient (ma2) = 0.4752
- Non-zero mean: The model incorporates a mean value of 550.6500

These coefficient values are estimated with their corresponding standard errors (s.e.), providing insights
into the relationship between the current value of the time series and its past values. The model's variance
is calculated as 27056, indicating the variability of the errors around the fitted values. The log likelihood
of the model is determined to be -943.89.

The information criteria associated with the model evaluation are as follows:
- AIC (Akaike Information Criterion) = 1897.79

- AlCc (corrected Akaike Information Criterion) = 1898.22

- BIC (Bayesian Information Criterion) = 1912.67

These criteria provide a quantitative measure of the relative quality of the ARIMA (1,0,2) model compared
to other potential models, aiding in the assessment of the model's goodness of fit and complexity.

The ARIMA (1,0,2) model, with its set of coefficients and statistical measures, can serve as a valuable
tool for forecasting and analyzing pulses production, providing valuable insights for decision-making and
planning in the domain of agricultural production and management.
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Point Forecast Lo 95 Hi 95
Feb 2019 670.1026 347.7147 992.4906
Mar 2019 525.6850 166.7660 884.6040
Apr 2019 556.7173 179.8673 933.5674
May 2019 549.1754 171.2929 927.0580
Jun 2019 551.0083 173.0649 928.9518
Jul 2019 550.5629 172.6158 928.5099
Aug 2019 550.6711 172.7239 928.6184
Sep 2019 550.6448 172.6976 928.5921
Oct 2019 550.6512 172.7040 928.5985

Pulse production is expected to maintain a steady and constant upward trend over the next few months,
according to projections. Predictions for February 2019 are centered on a point estimate of 670.1026 units,
with a 95% confidence interval of 347.7147 to 992.4906 units. The coming months' projections are
similarly quite stable, staying within the range of 525.6850 and 670.1026 units. These projections help
policymakers and other agricultural sector players make more well-informed decisions and put in place
more strategic strategies to sustainably expand and control pulses production in the region.
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The Ljung-Box test for the residuals of the forecasted data from the ARIMA(1,0,2) model for pulses
production does not exhibit significant autocorrelation, as indicated by the relatively higher p-value of
0.1201. This suggests that the residuals are essentially independent, with no remaining autocorrelation
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that the model has failed to capture. Consequently, the ARIMA(1,0,2) model can be considered an
appropriate fit for the data, as it adequately accounts for the underlying patterns and fluctuations in the
pulses production time series.

Decomposition of additive time series
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The time series data for pulses production spans from 2007 to 2019, with an observed range of production
levels fluctuating between 1873 and 4401 units. Over the years, the production values exhibit some
variability, with a noticeable decrease in the early years, followed by a gradual increase and subsequent
stabilization in the recent years. The trends indicate a dynamic agricultural landscape, potentially
influenced by various factors such as climate conditions, agricultural practices, and market dynamics.
Understanding these fluctuations is essential for devising sustainable strategies that promote consistent
pulses production, ensuring food security and economic stability in the region.

Pulses output has varied between a low of 1873 units and a high of 4401 units, as shown by the summary
statistics of this time series. Since the median value of production is larger than the mean value of
production, or 3120 units, the data distribution is slightly right-skewed. Half of the observations occur
between the interquartile range of 2419 and 3950 units, indicating a moderate variation of output levels
during the time frame. In order to appreciate the general trends and make educated decisions about
prospective interventions and policies in the pulses agricultural sector, it is essential to have a firm grasp
on the central tendency and spread of the production statistics.
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Differenced log-transformed time series data on pulses production in Tamil Nadu were subjected to the
Augmented Dickey-Fuller test. The time series data is stationary, as indicated by the -4.7589 value of the
test statistic, with a p-value of 0.01. This finding is significant because it shows that the trend and
seasonality components have been eliminated from the differenced log-transformed data, allowing for a
more accurate study and projection of the regional pulses production trends. It paves the way for the use
of suitable time series models to delve deeper into the production patterns of pulses in the future and make
reliable predictions about them.

Coefficient Values
o? 0.1639

log likelihood -6.17
AIC 14.35
AICc 14.75
BIC 14.83

The time series data for pulses production in Tamil Nadu was log-transformed before being analyzed
using the ARIMA model with differencing order 1 (0,1,0). A variance value of 0.1639 and a loglikelihood
of -6.17 were found after computing the parameters. A 14.35 Akaike Information Criterion (AIC) score,
a 14.75 AICc score, and a 14.83 Bayesian Information Criterion (BIC) score were obtained. These
numbers help in determining which model is the best suitable for making reliable predictions of future
pulses output.

Coefficient Values
x? 3.5805
df 1
P-value 0.05846

The Ljung-Box test performed on the residuals of the ARIMA(0,1,0) model fit to the log-transformed data
on pulses production yielded a test statistic of 3.5805 with 1 degree of freedom. At the 5% level of
significance, the corresponding p-value of 0.05846 indicates that there is insufficient evidence to reject
the null hypothesis of independence in the residuals. Therefore, the residual series does not exhibit any
appreciable autocorrelation.
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The pulses production data was analyzed using both the ARIMA and seasonal ARIMA models. The
coefficients obtained after fitting the data to the ARIMA(1,0,2) model with a non-zero mean are as
follows: arl = -0.2430, mal = 0.7324, ma2 = 0.4752, and a mean of 550.6500. With a log-likelihood of -
943.89, the model has an AIC of 1897.79, an AICc of 1898.22, and a BIC of 1912.67. The ARIMA model
residuals were subjected to the Ljung-Box test, which returned a test statistic of 8.7364 with 5 degrees of
freedom and a p-value of 0.1201.

When the log-transformed pulses production data was analyzed using the seasonal ARIMA model, the
fitted ARIMA(0,1,0) model yielded a sigma squared value of 0.1639 and a log-likelihood of -6.17. All
three measures of independence, the AIC, AICc, and BIC, were all 14. A p-value of 0.05846 was found
when the seasonal ARIMA model's residuals were subjected to a Ljung-Box test. The test statistic was
3.5805 with 1 degrees of freedom.

Overall, these analyses show that the selected models adequately captured the temporal patterns in the
pulses production data, with the ARIMA model showing slightly higher autocorrelation in the residuals
compared to the seasonal ARIMA model.
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